Structural plasticity and memory

Nature Reviews Neuroscience - Tập 5 Số 1 - Trang 45-54 - 2004
Raphael Lamprecht1, Joseph E. LeDoux1
1Center for Neural Science, New York University, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dudai, Y. Consolidation: fragility on the road to the engram. Neuron 17, 367–370 (1996).

McGaugh, J. L. Memory — a century of consolidation. Science 287, 248–251 (2000).

Davis, H. P. & Squire, L. R. Protein synthesis and memory: a review. Psychol. Bull. 96, 518–559 (1984).

Goelet, P., Castellucci, V. F., Schacher, S. & Kandel, E. R. The long and the short of long-term memory — a molecular framework. Nature 322, 419–422 (1986).

Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

Dudai, Y. Molecular bases of long-term memories: a question of persistence. Curr. Opin. Neurobiol. 12, 211–216 (2002).

Tanzi, E. I fatti i le induzione nell'odierna istologia del sistema nervoso. Riv. Sper. Freniatr. 19, 419–472 (1893).

Ramón y Cajal, S. La fine structure des centres nerveux. Proc. R. Soc. Lond. 55, 444–468 (1894).

Sherrington, C. S. The Integrative Action of the Nervous System, 2nd edn (Yale Univ. Press, New Haven, New Jersey, 1906).

Holt, E. B. Animal Drive and the Learning Process (Henry Holt, New York, 1931).

Grossman, S. P. A Textbook of Physiological Psychology (Wiley, New York, 1967).

Hebb, D. O. The Organization of Behavior: a Neuropsychological Theory (Wiley, New York, 1949).

Konorski, J. Conditioned Reflexes and Neuron Organization (Cambridge Univ. Press, Cambridge, UK, 1948).

Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

Tsien, J. Z. Linking Hebb's coincidence-detection to memory formation. Curr. Opin. Neurobiol. 10, 266–273 (2000).

Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science 285, 1870–1874 (1999).

Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

Sanes, J. R. & Lichtman, J. W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Rev. Neurosci. 2, 791–805 (2001).

Cohen-Cory, S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 298, 770–776 (2002).

Brown, T. H., Chapman, P. F., Kairiss, E. W. & Keenan, C. L. Long-term synaptic potentiation. Science 242, 724–728 (1988).

Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

Blair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. & LeDoux, J. E. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem. 8, 229–242 (2001).

Bauer, E. P., Schafe, G. E. & LeDoux, J. E. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249 (2002).

Grover, L. M. & Teyler, T. J. Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347, 477–479 (1990).

Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

Collingridge, G. L. & Bliss, T. V. Memories of NMDA receptors and LTP. Trends Neurosci. 18, 54–56 (1995).

Magee, J. C. & Johnston, D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304 (1995).

Miyakawa, H. et al. Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron 9, 1163–1173 (1992).

Sabatini, B. L., Maravall, M. & Svoboda, K. Ca2+ signaling in dendritic spines. Curr. Opin. Neurobiol. 11, 349–356 (2001).

Nakamura, T. et al. Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons. J. Neurosci. 20, 8365–8376 (2000).

Bortolotto, Z. A., Bashir, Z. I., Davies, C. H. & Collingridge, G. L. A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368, 740–743 (1994).

Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci. 3, 175–190 (2002).

Tanaka, C. & Nishizuka, Y. The protein kinase C family for neuronal signaling. Annu. Rev. Neurosci. 17, 551–567 (1994).

Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

West, A. E., Griffith, E. C. & Greenberg, M. E. Regulation of transcription factors by neuronal activity. Nature Rev. Neurosci. 3, 921–931 (2002).

Poo, M. M. Neurotrophins as synaptic modulators. Nature Rev. Neurosci. 2, 24–32 (2001).

Steward, O. & Schuman, E. M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325 (2001).

Matus, A. Actin-based plasticity in dendritic spines. Science 290, 754–778 (2000).

Bailey, C. H. & Chen, M. Morphological basis of long-term habituation and sensitization in Aplysia. Science 220, 91–93 (1983).

Bailey, C. H. & Chen, M. Long-term sensitization in Aplysia increases the number of presynaptic contacts onto the identified gill motor neuron L7. Proc. Natl Acad. Sci. USA 85, 9356–9359 (1988).

Glanzman, D. L., Kandel, E. R. & Schacher, S. Target-dependent structural changes accompanying long-term synaptic facilitation in Aplysia neurons. Science 49, 799–802 (1990).

Bailey, C. H., Chen, M., Keller, F. & Kandel, E. R. Serotonin-mediated endocytosis of apCAM: an early step of learning-related synaptic growth in Aplysia. Science 256, 645–649 (1992). References 40–43 present early cellular and molecular evidence and mechanisms for structural plasticity in Aplysia.

Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).

Matthews, D. A., Cotman, C. & Lynch, G. An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration. Brain Res. 115, 1–21 (1976).

Cotman, C. W., Matthews, D. A., Taylor, D. & Lynch, G. Synaptic rearrangement in the dentate gyrus: histochemical evidence of adjustments after lesions in immature and adult rats. Proc. Natl Acad. Sci. USA 70, 3473–3477 (1973).

Lee, K. S., Schottler, F., Oliver, M. & Lynch, G. Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus. J. Neurophysiol. 44, 247–258 (1980).

Van Harreveld, A. & Fifkova, E. Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp. Neurol. 49, 736–749 (1975).

Desmond, N. L. & Levy, W. B. Synaptic correlates of associative potentiation/depression: an ultrastructural study in the hippocampus. Brain Res. 265, 21–30 (1983).

Chang, F. L. & Greenough, W. T. Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice. Brain Res. 309, 35–46 (1984).

Fuchs, J. L., Montemayor, M. & Greenough, W. T. Effect of environmental complexity on size of the superior colliculus. Behav. Neural. Biol. 54, 198–203 (1990).

Greenough, W. T & Volkmar, F. R. Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Exp. Neurol. 40, 491–504 (1973)

McEwen, B. S. Plasticity of the hippocampus: adaptation to chronic stress and allostatic load. Ann. NY Acad. Sci. 933, 265–277 (2001).

Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

Gray, E. G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183, 1592–1593 (1959).

Nimchinsky, E. A., Sabatini, B. L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

Harris, K. M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348 (1999).

Sheng, M. & Kim, M. J. Postsynaptic signaling and plasticity mechanisms. Science 298, 776–780 (2002).

Kennedy, M. B. The postsynaptic density at glutamatergic synapses. Trends Neurosci. 20, 264–268 (1997).

Weiler, I. J., Hawrylak, N. & Greenough, W. T. Morphogenesis in memory formation: synaptic and cellular mechanisms. Behav. Brain Res. 66, 1–6 (1995).

Nikonenko, I., Jourdain, P., Alberi, S., Toni, N. & Muller, D. Activity-induced changes of spine morphology. Hippocampus 12, 585–591 (2002).

Sorra, K. E. & Harris, K. M. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501–511 (2000).

Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

Muller, D., Nikonenko, I., Jourdain, P. & Alberi, S. LTP, memory and structural plasticity. Curr. Mol. Med. 2, 605–611 (2002).

Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999). Using a combination of a local superfusion technique with two-photon imaging, this study shows that induction of long-lasting (but not short-lasting) functional enhancement of synapses in area CA1 leads to the appearance of new spines on the postsynaptic dendrite.

Fifkova, E. & Van Harreveld, A. Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J. Neurocytol. 6, 211–230 (1977).

Fifkova, E. & Anderson, C. L. Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp. Neurol. 74, 621–627 (1981).

Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 (1999). This study used electron microscopy to show that LTP induction leads to changes in the proportion of spines with perforated synapses and to an increase in multiple spine boutons.

Fiala, J. C., Allwardt, B. & Harris, K. M. Dendritic spines do not split during hippocampal LTP or maturation. Nature Neurosci. 5, 297–298 (2002).

Harris, K. M., Fiala, J. C. & Ostroff, L. Structural changes at dendritic spine synapses during long-term potentiation. Philos. Trans. R. Soc. Lond. B 358, 745–748 (2003).

Leuner, B., Falduto, J. & Shors, T. J. Associative memory formation increases the observation of dendritic spines in the hippocampus. J. Neurosci. 23, 659–665 (2003).

Geinisman, Y., Berry, R. W., Disterhoft, J. F., Power, J. M. & Van der Zee, E. A. Associative learning elicits the formation of multiple-synapse boutons. J. Neurosci. 21, 5568–5573 (2001).

Kleim, J. A. et al. Synapse formation is associated with memory storage in the cerebellum. Proc. Natl Acad. Sci. USA 99, 13228–13231 (2002).

Knafo, S., Grossman, Y., Barkai, E. & Benshalom, G. Olfactory learning is associated with increased spine density along apical dendrites of pyramidal neurons in the rat piriform cortex. Eur. J. Neurosci. 13, 633–638 (2001).

Volfovsky, N., Parnas, H., Segal, M. & Korkotian, E. Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: theory and experiments. J. Neurophysiol. 82, 450–462 (1999).

Majewska, A., Brown, E., Ross, J. & Yuste, R. Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J. Neurosci. 20, 1722–1734 (2000).

Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci. 411, 1086–1092 (2001).

Smith, M. A., Ellis-Davies, G. C. & Magee, J. C. Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. J. Physiol. (Lond.) 548, 245–258 (2003).

Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nature Neurosci. 2, 618–624 (1999).

Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

Harris, K. M. & Stevens, J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

Ostroff, L. E., Fiala, J. C., Allwardt, B. & Harris, K. M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545 (2002).

Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl Acad. Sci. USA 96, 13438–13443 (1999).

Krucker, T., Siggins, G. R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl Acad. Sci. USA 97, 6856–6861 (2000). The study shows that actin filament assembly is essential for the maintenance of stable LTP.

Fukazawa, Y. et al. Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 (2003). This study shows that LTP induction is associated with long-lasting increases in polymerized actin (F-actin) content in dendritic spines. Inhibition of actin polymerization or the phosphorylation of the actin depolymerization factor/cofilin impaired the late phase of LTP.

Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

Colicos, M. A., Collins, B. E., Sailor, M. J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell 107, 605–616 (2001).

Hatada, Y., Wu, F., Sun, Z. Y., Schacher, S. & Goldberg, D. J. Presynaptic morphological changes associated with long-term synaptic facilitation are triggered by actin polymerization at preexisting varicositis. J. Neurosci. 20, RC82 (2000).

Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H. & Matus, A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nature Neurosci. 3, 887–894 (2000). This study shows that NMDA and AMPA receptors inhibit actin dynamics in spines and actin-based protrusive activity of the spine head.

McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H. & Thompson, S. M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nature Neurosci. 2, 44–49 (1999). Evidence is presented showing that AMPA receptor activation by spontaneous vesicular glutamate release is sufficient to maintain dendritic spines.

Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

Heynen, A. J., Quinlan, E. M., Bae, D. C. & Bear, M. F. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28, 527–536 (2000).

Takahashi, T., Svoboda, K. & Malinow, R. Experience strengthening transmission by driving AMPA receptors into synapses. Science 299, 1585–1588 (2003).

Lee, H. K. et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631–643 (2003).

Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

Grosshans, D. R., Clayton, D. A., Coultrap, S. J. & Browning, M. D. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nature Neurosci. 5, 27–33 (2002).

Esteban, J. A. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nature Neurosci. 6, 136–143 (2003).

Schafe, G. E. & LeDoux, J. E. Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J. Neurosci. 20, RC96 (2000).

Schafe, G. E., Nader, K., Blair, H. T. & LeDoux, J. E. Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 24, 540–546 (2001).

Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).

Colledge, M. et al. Targeting of PKA to glutamate receptors through a MAGUK–AKAP complex. Neuron 27, 107–119 (2000).

Moita, M. A., Lamprecht, R., Nader, K. & LeDoux, J. E. A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nature Neurosci. 5, 837–838 (2002).

Luo, L. Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu. Rev. Cell Dev. Biol. 18, 601–635 (2002).

Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 3, 173–180 (2000).

Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

Nakayama, A. Y., Harms, M. B. & Luo, L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20, 5329–5338 (2000). The study shows that inhibition of Rac1 GTPase results in a progressive elimination of dendritic spines, and that hyperactivation of RhoA GTPase causes simplification of dendritic branch patterns that is dependent on the activity of the downstream Rho-associated kinase (ROCK) in hippocampal pyramidal neurons.

Tashiro, A., Minden, A. & Yuste, R. Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb. Cortex 10, 927–938 (2000). This study shows that Rac GTPase can promote the appearance of spines, whereas Rho GTPase can prevent spine formation, promote spine retraction and stabilize shorter spines.

Li, Z., Van Aelst, L. & Cline, H. T. Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nature Neurosci. 3, 217–225 (2000).

Sin, W. C., Haas, K., Ruthazer, E. S. & Cline, H. T. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419, 475–480 (2002).

Lamprecht, R., Farb, C. R. & LeDoux, J. E. Fear memory formation involves p190 RhoGAP and ROCK proteins through a GRB2-mediated complex. Neuron 36, 727–738 (2002). This study demonstrates a role for the p190 Rho GTPase-activating protein (p190 RhoGAP) and Rho-associated kinase (ROCK) in the amygdala in the formation of long-term fear memory.

Bito, H. et al. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron 26, 431–441 (2000).

Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35, 121–133 (2002). Limk1-knockout mice exhibited abnormalities in spine morphology. The mice also showed enhanced hippocampal long-term potentiation and altered fear responses and spatial learning.

Benson, D. L., Schnapp, L. M., Shapiro, L. & Huntley, G. W. Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends Cell. Biol. 10, 473–482 (2000).

Edelman, G. M. Neural Darwinism: The Theory of Neuronal Group Selection (Basic Books, New York, 1987).

Togashi, H. et al. Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77–89 (2002).

Murase, S., Mosser, E. & Schuman, E. M. Depolarization drives β-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91–105 (2002).

Noren, N. K. & Arthur, W. T. & Burridge, K. Cadherin engagement inhibits RhoA via p190RhoGAP. J. Biol. Chem. 278, 13615–13618 (2003).

Staubli, U., Chun, D. & Lynch, G. Time-dependent reversal of long-term potentiation by an integrin antagonist. J. Neurosci. 18, 3460–3469 (1998).

Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L. & Huntley, G. W. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259 (2000).

Tiunova, A., Anokhin, K. V., Schachner, M. & Rose, S. P. Three time windows for amnestic effect of antibodies to cell adhesion molecule L1 in chicks. Neuroreport 9, 1645–1648 (1998).

Doyle, E., Nolan, P. M., Bell, R. & Regan, C. M. Intraventricular infusions of anti-neural cell adhesion molecules in a discrete posttraining period impair consolidation of a passive avoidance response in the rat. J. Neurochem. 59, 1570–1573 (1992).

Ressler, K. J., Paschall, G., Zhou, X. L. & Davis, M. Regulation of synaptic plasticity genes during consolidation of fear conditioning. J. Neurosci. 22, 7892–7902 (2002).

Nader, K., Schaf, G. E. & LeDoux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

Debiec, J., LeDoux, J. E. & Nader, K. Cellular and systems reconsolidation in the hippocampus. Neuron 36, 527–538 (2002).

Nader, K. Memory traces unbound. Trends Neurosci. 26, 65–72 (2003).

Kida, S. et al. CREB required for the stability of new and reactivated fear memories. Nature Neurosci. 5, 348–355 (2002).

Milekic, M. H. & Alberini, C. M. Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36, 521–525 (2002).

Przybyslawski, J. & Sara, S. J. Reconsolidation of memory after its reactivation. Behav. Brain Res. 84, 241–246 (1997).

Pedreira, M. E., Perez-Cuesta, L. M. & Maldonado, H. Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors. J. Neurosci. 22, 8305–8311 (2002).

Sangha, S., Scheibenstock, A. & Lukowiak, K. Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J Neurosci. 23, 8034–8040 (2003).

Gerlai, R. et al. Regulation of learning by EphA receptors: a protein targeting study. J. Neurosci. 19, 9538–9549 (1999).