Tổ chức cấu trúc và tương tác của các miền xuyên màng trong protein tetraspanin
Tóm tắt
Từ khóa
Tài liệu tham khảo
Stipp CS, Kolesnikova TV, Hemler ME: Functional domains in tetraspanin proteins. Trends Biochem Sci 2003, 28: 106–112. 10.1016/S0968-0004(02)00014-2
Hemler ME: Tetraspanin proteins mediate cellular penetration, invasion and fusion events, and define a novel type of membrane microdomain. Ann Rev Cell Dev Biol 2003, 19: 397–422. 10.1146/annurev.cellbio.19.111301.153609
Berditchevski F: Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 2001, 114: 4143–4151.
Tarrant JM, Robb L, van Spriel AB, Wright MD: Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol 2003, 24: 610–617. 10.1016/j.it.2003.09.011
Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C: Severely reduced female fertility in CD9-deficient mice. Science 2000, 287: 319–321. 10.1126/science.287.5451.319
Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A: The gamete fusion process is defective in eggs of CD9-deficient mice. Nature Genet 2000, 24: 279–282. 10.1038/73502
Miyado K, Yamada G, Yamada S, Hasuma H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E: Requirement of CD9 on the egg plasma membrane for fertilization. Science 2000, 287: 321–324. 10.1126/science.287.5451.321
Maecker HT, Levy S: Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med 1997, 185: 1505–1510. 10.1084/jem.185.8.1505
Miyazaki T, Muller U, Campbell KS: Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J 1997, 16: 4217–4225. 10.1093/emboj/16.14.4217
Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK: Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 2004, 24: 5978–5988. 10.1128/MCB.24.13.5978-5988.2004
Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME: An extracellular site on tetraspanin CD151 determines α 3 and α 6 integrin-dependent cellular morphology. J Cell Biol 2002, 158: 1299–1309. 10.1083/jcb.200204056
Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC, Hynes RO, Myles DG, Primakoff P: Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 2002, 129: 1995–2002.
Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M: CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 2001, 20: 12–18. 10.1093/emboj/20.1.12
Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H: Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 2001, 276: 40055–40064. 10.1074/jbc.M105557200
Maecker HT, Todd SC, Levy S: The tetraspanin superfamily: molecular facilitators. FASEB J 1997, 11: 428–442.
Rubinstein E, Le Naour F, Lagaudrière-Gesbert C, Billard M, Conjeaud H, Boucheix C: CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA antigens. Eur J Immunol 1996, 26: 2657–2665.
Claas C, Stipp CS, Hemler ME: Evaluation of prototype TM4SF protein complexes and their relation to lipid rafts. J Biol Chem 2001, 276: 7974–7984. 10.1074/jbc.M008650200
Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E: Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 2003, 304: 107–112. 10.1016/S0006-291X(03)00545-X
Berditchevski F, Odintsova E, Sawada S, Gilbert E: Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signalling. J Biol Chem 2002, 277: 36991–37000. 10.1074/jbc.M205265200
Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E: Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 2002, 516: 139–144. 10.1016/S0014-5793(02)02522-X
Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME: Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 2002, 13: 767–781. 10.1091/mbc.01-05-0275
Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ: Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem 2001, 276: 41165–41174. 10.1074/jbc.M104041200
Cannon KS, Cresswell P: Quality control of transmembrane domain assembly in the tetraspanin CD82. EMBO J 2001, 20: 2443–2453. 10.1093/emboj/20.10.2443
Toyo-Oka K, Yashiro-Ohtani Y, Park CS, Tai XG, Miyake K, Hamaoka T, Fujiwara H: Association of a tetraspanin CD9 with CD5 on the T cell surface: role of particular transmembrane domains in the association. Int Immunol 1999, 11: 2043–2052. 10.1093/intimm/11.12.2043
Kovalenko OV, Yang X, Kolesnikova TV, Hemler ME: Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem J 2004, 377: 407–417. 10.1042/BJ20031037
Boucheix C, Thien Duc GH, Jasmin C, Rubinstein E: Tetraspanins and malignancy. Exp Rev Mol Med 2001. [http://www.expertreviews.org/01002381h.htm]
Bienstock RJ, Barrett JC: KAI1, a prostate metastasis suppressor: prediction of solvated structure and interactions with binding partners; integrins, cadherins, and cell-surface receptor proteins. Mol Carcinog 2001, 32: 139–153. 10.1002/mc.1073
Burkhard P, Stetefeld J, Strelkov SV: Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 2001, 11: 82–88. 10.1016/S0962-8924(00)01898-5
Langosch D, Heringa J: Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 1998, 31: 150–159. 10.1002/(SICI)1097-0134(19980501)31:2<150::AID-PROT5>3.0.CO;2-Q
Lupas A: Coiled coils: new structures and new functions. Trends Biochem Sci 1996, 21: 375–382. 10.1016/0968-0004(96)10052-9
Walshaw J, Woolfson DN: Extended knobs-into-holes packing in classical and complex coiled-coil assemblies. J Struct Biol 2003, 144: 349–361. 10.1016/j.jsb.2003.10.014
O'Shea EK, Klemm JD, Kim PS, Alber T: X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 1991, 254: 539–544.
Zacharias DA, Violin JD, Newton AC, Tsien RY: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 2002, 296: 913–916. 10.1126/science.1068539
Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J: Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 2003, 163: 257–269. 10.1083/jcb.200306020
Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ: Internal packing of helical membrane proteins. Proc Natl Acad Sci USA 2000, 97: 5796–5801. 10.1073/pnas.97.11.5796
Javadpour MM, Eilers M, Groesbeek M, Smith SO: Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 1999, 77: 1609–1618.
Russ WP, Engelman DM: The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 2000, 296: 911–919. 10.1006/jmbi.1999.3489
Senes A, Gerstein M, Engelman DM: Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 2000, 296: 921–936. 10.1006/jmbi.1999.3488
Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann BJ, Dempsey CE, Engelman DM: Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem 1992, 267: 7683–7689.
Lemmon MA, Treutlein HR, Adams PD, Brunger AT, Engelman DM: A dimerization motif for transmembrane alpha-helices. Nature Struct Biol 1994, 1: 157–163. 10.1038/nsb0394-157
MacKenzie KR, Prestegard JH, Engelman DM: A transmembrane helix dimer: structure and implications. Science 1997, 276: 131–133. 10.1126/science.276.5309.131
Senes A, Ubarretxena-Belandia I, Engelman DM: The Calpha – H ... O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci USA 2001, 98: 9056–9061. 10.1073/pnas.161280798
Deber CM, Khan AR, Li Z, Joensson C, Glibowicka M, Wang J: Val→Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein. Proc Natl Acad Sci USA 1993, 90: 11648–11652.
Overton MC, Chinault SL, Blumer KJ: Oligomerization, biogenesis, and signaling is promoted by a glycophorin A-like dimerization motif in transmembrane domain 1 of a yeast G protein-coupled receptor. J Biol Chem 2003, 278: 49369–49377. 10.1074/jbc.M308654200
Li R, Gorelik R, Nanda V, Law PB, Lear JD, DeGrado WF, Bennett JS: Dimerization of the transmembrane domain of integrin alphaIIb subunit in cell membranes. J Biol Chem 2004, 279: 26666–26673. 10.1074/jbc.M314168200
Gerber D, Sal-Man N, Shai Y: Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J Biol Chem 2004, 279: 21177–21182. 10.1074/jbc.M400847200
Kleiger G, Grothe R, Mallick P, Eisenberg D: GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles. Biochemistry 2002, 41: 5990–5997. 10.1021/bi0200763
Liu Y, Engelman DM, Gerstein M: Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol 2002, 3: research0054.
Lear JD, Stouffer A, Gratkowski H, Nanda V, DeGrado WF: Association of a model transmembrane peptide containing Gly in a heptad sequence motif. Biophys J 2004, 87: 3421–3429. 10.1529/biophysj.103.032839
Cosson P, Bonifacino JS: Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science 1992, 258: 659–662.
Adamian L, Liang J: Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. J Mol Biol 2001, 311: 891–907. 10.1006/jmbi.2001.4908
Lee AG: Ca 2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions. Biochim Biophys Acta 2002, 1565: 246–266.
Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R: The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998, 280: 69–77. 10.1126/science.280.5360.69
Zhou FX, Cocco MJ, Russ WP, Brunger AT, Engelman DM: Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Struct Biol 2000, 7: 154–160. 10.1038/81919
Choma C, Gratkowski H, Lear JD, DeGrado WF: Asparagine-mediated self-association of a model transmembrane helix. Nature Struct Biol 2000, 7: 161–166. 10.1038/72440
Gratkowski H, Lear JD, DeGrado WF: Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci USA 2001, 98: 880–885. 10.1073/pnas.98.3.880
Ruan W, Lindner E, Langosch D: The interface of a membrane-spanning leucine zipper mapped by asparagine-scanning mutagenesis. Protein Sci 2004, 13: 555–559. 10.1110/ps.03357404
Partridge AW, Therien AG, Deber CM: Polar mutations in membrane proteins as a biophysical basis for disease. Biopolymers 2002, 66: 350–358. 10.1002/bip.10313
Sanders CR, Myers JK: Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 2004, 33: 25–51. 10.1146/annurev.biophys.33.110502.140348
Cai SJ, Khorchid A, Ikura M, Inouye M: Probing catalytically essential domain orientation in histidine kinase EnvZ by targeted disulfide crosslinking. J Mol Biol 2003, 328: 409–418. 10.1016/S0022-2836(03)00275-4
Hamdan FF, Ward SD, Siddiqui NA, Bloodworth LM, Wess J: Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor. Biochemistry 2002, 41: 7647–7658. 10.1021/bi016029c
Guan L, Murphy FD, Kaback HR: Surface-exposed positions in the transmembrane helices of the lactose permease of Escherichia coli determined by intermolecular thiol cross-linking. Proc Natl Acad Sci USA 2002, 99: 3475–3480. 10.1073/pnas.052703699
Roy R, Laage R, Langosch D: Synaptobrevin transmembrane domain dimerization-revisited. Biochemistry 2004, 43: 4964–4970. 10.1021/bi0362875
Luo B-H, Springer TA, Takagi J: A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol 2004, 2: e153. 10.1371/journal.pbio.0020153
Yauch RL, Hemler ME: Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphatidylinositol 4-kinase. Biochem J 2000, 351: 629–637. 10.1042/0264-6021:3510629
Zhang XA, Bontrager AL, Hemler ME: TM4SF proteins associate with activated PKC and link PKC to specific beta1 integrins. J Biol Chem 2001, 276: 25005–25013. 10.1074/jbc.M102156200
Li W, Metcalf D, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, DeGrado WF, Bennett JS: A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci USA 2005, 102: 1424–1429. 10.1073/pnas.0409334102
Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P: A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 1984, 106: 765. 10.1021/ja00315a051
Kuhlman B, Baker D: Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA 2000, 97: 10383–10388. 10.1073/pnas.97.19.10383