Tổ chức cấu trúc và tương tác của các miền xuyên màng trong protein tetraspanin

О. В. Коваленко1, Douglas G. Metcalf2, William F. DeGrado2, Martin E. Hemler3
1Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, USA
2Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, USA
3Dana-Farber Cancer Institute, D-1430, 44 Binney Street, Boston, MA, 02115, USA

Tóm tắt

Tóm tắt Nền tảng

Các protein thuộc họ tetraspanin chứa bốn miền xuyên màng (TM1-4) được liên kết bởi hai vòng ngoài tế bào và một vòng ngắn trong tế bào, với các đầu N- và C-terminus ngắn ở trong tế bào. Mặc dù đã có phân tích cấu trúc và chức năng của vòng ngoài lớn hơn, tổ chức và vai trò của các miền xuyên màng vẫn chưa được đánh giá một cách hệ thống.

Kết quả

Trong số 28 protein tetraspanin ở người, các chuỗi TM1-3 hiển thị một mô hình lặp heptad đặc trưng ( abcdefg )n. Ở TM1, vị trí a được chiếm bởi các dư lượng lớn cấu trúc bảo tồn và vị trí d chứa các dư lượng Asn và Gly được bảo tồn cao. Ở TM2, vị trí a được chiếm bởi các dư lượng nhỏ bảo tồn (Gly/Ala/Thr), và vị trí d có một Gly được bảo tồn cùng với hai dư lượng aliphatic lớn. Ở TM3, ba vị trí a trong lặp heptad được lấp đầy bởi hai leucine và một dư lượng glutamate/glutamine, và hai vị trí d được chiếm bởi các dư lượng Phe/Tyr hoặc Val/Ile/Leu. Không có mô hình heptad nào rõ ràng trong các chuỗi TM4. Các đột biến ở các glycine được bảo tồn trong protein CD9 của người (Gly25 và Gly32 ở TM1; Gly67 và Gly74 ở TM2) dẫn đến sự kết tụ của các protein đột biến trong tế bào. Mô hình hóa giao diện TM1-TM2 trong CD9, sử dụng một thuật toán mới, dự đoán sự đóng gói chặt chẽ của các dư lượng lớn được bảo tồn chống lại các dư lượng Gly được bảo tồn dọc theo hai chuỗi xoắn. Giao diện homodimeric của CD9 đã được lập bản đồ, bằng cách liên kết chéo disulfide của các đột biến cysteine đơn, gần với các dư lượng Leu14 và Phe17 ở TM1 (các vị trí g c ) và Gly77, Gly80 và Ala81 ở TM2 (các vị trí d , g a , tương ứng). Các đột biến ở các dư lượng a d trong cả TM1 và TM2 (Gly25, Gly32, Gly67 và Gly74), tham gia vào tương tác TM1-TM2 nội phân tử, cũng làm giảm mạnh tương tác giữa các phân tử, được đánh giá thông qua việc liên kết chéo của Cys80.

Kết luận

Các kết quả của chúng tôi gợi ý rằng các tương tác nội và liên phân tử của tetraspanin được trung gian bởi các dư lượng được bảo tồn ở các vùng gần nhau nhưng khác biệt của TM1 và TM2. Một yếu tố cấu trúc chính xác định tương tác TM1-TM2 trong các tetraspanin là sự đóng gói cụ thể của các dư lượng lớn chống lại các dư lượng nhỏ.

Từ khóa


Tài liệu tham khảo

Stipp CS, Kolesnikova TV, Hemler ME: Functional domains in tetraspanin proteins. Trends Biochem Sci 2003, 28: 106–112. 10.1016/S0968-0004(02)00014-2

Hemler ME: Tetraspanin proteins mediate cellular penetration, invasion and fusion events, and define a novel type of membrane microdomain. Ann Rev Cell Dev Biol 2003, 19: 397–422. 10.1146/annurev.cellbio.19.111301.153609

Berditchevski F: Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 2001, 114: 4143–4151.

Tarrant JM, Robb L, van Spriel AB, Wright MD: Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol 2003, 24: 610–617. 10.1016/j.it.2003.09.011

Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C: Severely reduced female fertility in CD9-deficient mice. Science 2000, 287: 319–321. 10.1126/science.287.5451.319

Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A: The gamete fusion process is defective in eggs of CD9-deficient mice. Nature Genet 2000, 24: 279–282. 10.1038/73502

Miyado K, Yamada G, Yamada S, Hasuma H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E: Requirement of CD9 on the egg plasma membrane for fertilization. Science 2000, 287: 321–324. 10.1126/science.287.5451.321

Maecker HT, Levy S: Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J Exp Med 1997, 185: 1505–1510. 10.1084/jem.185.8.1505

Miyazaki T, Muller U, Campbell KS: Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J 1997, 16: 4217–4225. 10.1093/emboj/16.14.4217

Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK: Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 2004, 24: 5978–5988. 10.1128/MCB.24.13.5978-5988.2004

Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME: An extracellular site on tetraspanin CD151 determines α 3 and α 6 integrin-dependent cellular morphology. J Cell Biol 2002, 158: 1299–1309. 10.1083/jcb.200204056

Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC, Hynes RO, Myles DG, Primakoff P: Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 2002, 129: 1995–2002.

Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M: CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 2001, 20: 12–18. 10.1093/emboj/20.1.12

Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H: Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 2001, 276: 40055–40064. 10.1074/jbc.M105557200

Maecker HT, Todd SC, Levy S: The tetraspanin superfamily: molecular facilitators. FASEB J 1997, 11: 428–442.

Rubinstein E, Le Naour F, Lagaudrière-Gesbert C, Billard M, Conjeaud H, Boucheix C: CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA antigens. Eur J Immunol 1996, 26: 2657–2665.

Claas C, Stipp CS, Hemler ME: Evaluation of prototype TM4SF protein complexes and their relation to lipid rafts. J Biol Chem 2001, 276: 7974–7984. 10.1074/jbc.M008650200

Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E: Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 2003, 304: 107–112. 10.1016/S0006-291X(03)00545-X

Berditchevski F, Odintsova E, Sawada S, Gilbert E: Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signalling. J Biol Chem 2002, 277: 36991–37000. 10.1074/jbc.M205265200

Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E: Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 2002, 516: 139–144. 10.1016/S0014-5793(02)02522-X

Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME: Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 2002, 13: 767–781. 10.1091/mbc.01-05-0275

Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ: Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem 2001, 276: 41165–41174. 10.1074/jbc.M104041200

Cannon KS, Cresswell P: Quality control of transmembrane domain assembly in the tetraspanin CD82. EMBO J 2001, 20: 2443–2453. 10.1093/emboj/20.10.2443

Toyo-Oka K, Yashiro-Ohtani Y, Park CS, Tai XG, Miyake K, Hamaoka T, Fujiwara H: Association of a tetraspanin CD9 with CD5 on the T cell surface: role of particular transmembrane domains in the association. Int Immunol 1999, 11: 2043–2052. 10.1093/intimm/11.12.2043

Kovalenko OV, Yang X, Kolesnikova TV, Hemler ME: Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem J 2004, 377: 407–417. 10.1042/BJ20031037

Boucheix C, Thien Duc GH, Jasmin C, Rubinstein E: Tetraspanins and malignancy. Exp Rev Mol Med 2001. [http://www.expertreviews.org/01002381h.htm]

Hemler ME: Specific tetraspanin functions. J Cell Biol 2001, 155: 1103–1107. 10.1083/jcb.200108061

Bienstock RJ, Barrett JC: KAI1, a prostate metastasis suppressor: prediction of solvated structure and interactions with binding partners; integrins, cadherins, and cell-surface receptor proteins. Mol Carcinog 2001, 32: 139–153. 10.1002/mc.1073

Burkhard P, Stetefeld J, Strelkov SV: Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 2001, 11: 82–88. 10.1016/S0962-8924(00)01898-5

Langosch D, Heringa J: Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 1998, 31: 150–159. 10.1002/(SICI)1097-0134(19980501)31:2<150::AID-PROT5>3.0.CO;2-Q

Lupas A: Coiled coils: new structures and new functions. Trends Biochem Sci 1996, 21: 375–382. 10.1016/0968-0004(96)10052-9

Walshaw J, Woolfson DN: Extended knobs-into-holes packing in classical and complex coiled-coil assemblies. J Struct Biol 2003, 144: 349–361. 10.1016/j.jsb.2003.10.014

O'Shea EK, Klemm JD, Kim PS, Alber T: X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 1991, 254: 539–544.

Zacharias DA, Violin JD, Newton AC, Tsien RY: Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 2002, 296: 913–916. 10.1126/science.1068539

Bowie JU: Helix packing in membrane proteins. J Mol Biol 1997, 272: 780–789. 10.1006/jmbi.1997.1279

Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J: Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 2003, 163: 257–269. 10.1083/jcb.200306020

Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ: Internal packing of helical membrane proteins. Proc Natl Acad Sci USA 2000, 97: 5796–5801. 10.1073/pnas.97.11.5796

Javadpour MM, Eilers M, Groesbeek M, Smith SO: Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 1999, 77: 1609–1618.

Russ WP, Engelman DM: The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 2000, 296: 911–919. 10.1006/jmbi.1999.3489

Senes A, Gerstein M, Engelman DM: Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 2000, 296: 921–936. 10.1006/jmbi.1999.3488

Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann BJ, Dempsey CE, Engelman DM: Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem 1992, 267: 7683–7689.

Lemmon MA, Treutlein HR, Adams PD, Brunger AT, Engelman DM: A dimerization motif for transmembrane alpha-helices. Nature Struct Biol 1994, 1: 157–163. 10.1038/nsb0394-157

MacKenzie KR, Prestegard JH, Engelman DM: A transmembrane helix dimer: structure and implications. Science 1997, 276: 131–133. 10.1126/science.276.5309.131

Senes A, Ubarretxena-Belandia I, Engelman DM: The Calpha – H ... O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci USA 2001, 98: 9056–9061. 10.1073/pnas.161280798

Deber CM, Khan AR, Li Z, Joensson C, Glibowicka M, Wang J: Val→Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein. Proc Natl Acad Sci USA 1993, 90: 11648–11652.

Overton MC, Chinault SL, Blumer KJ: Oligomerization, biogenesis, and signaling is promoted by a glycophorin A-like dimerization motif in transmembrane domain 1 of a yeast G protein-coupled receptor. J Biol Chem 2003, 278: 49369–49377. 10.1074/jbc.M308654200

Li R, Gorelik R, Nanda V, Law PB, Lear JD, DeGrado WF, Bennett JS: Dimerization of the transmembrane domain of integrin alphaIIb subunit in cell membranes. J Biol Chem 2004, 279: 26666–26673. 10.1074/jbc.M314168200

Gerber D, Sal-Man N, Shai Y: Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. J Biol Chem 2004, 279: 21177–21182. 10.1074/jbc.M400847200

Kleiger G, Grothe R, Mallick P, Eisenberg D: GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles. Biochemistry 2002, 41: 5990–5997. 10.1021/bi0200763

Liu Y, Engelman DM, Gerstein M: Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol 2002, 3: research0054.

Lear JD, Stouffer A, Gratkowski H, Nanda V, DeGrado WF: Association of a model transmembrane peptide containing Gly in a heptad sequence motif. Biophys J 2004, 87: 3421–3429. 10.1529/biophysj.103.032839

Cosson P, Bonifacino JS: Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science 1992, 258: 659–662.

Adamian L, Liang J: Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. J Mol Biol 2001, 311: 891–907. 10.1006/jmbi.2001.4908

Lee AG: Ca 2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions. Biochim Biophys Acta 2002, 1565: 246–266.

Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R: The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998, 280: 69–77. 10.1126/science.280.5360.69

Zhou FX, Cocco MJ, Russ WP, Brunger AT, Engelman DM: Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Struct Biol 2000, 7: 154–160. 10.1038/81919

Choma C, Gratkowski H, Lear JD, DeGrado WF: Asparagine-mediated self-association of a model transmembrane helix. Nature Struct Biol 2000, 7: 161–166. 10.1038/72440

Gratkowski H, Lear JD, DeGrado WF: Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci USA 2001, 98: 880–885. 10.1073/pnas.98.3.880

Ruan W, Lindner E, Langosch D: The interface of a membrane-spanning leucine zipper mapped by asparagine-scanning mutagenesis. Protein Sci 2004, 13: 555–559. 10.1110/ps.03357404

Partridge AW, Therien AG, Deber CM: Polar mutations in membrane proteins as a biophysical basis for disease. Biopolymers 2002, 66: 350–358. 10.1002/bip.10313

Sanders CR, Myers JK: Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 2004, 33: 25–51. 10.1146/annurev.biophys.33.110502.140348

Cai SJ, Khorchid A, Ikura M, Inouye M: Probing catalytically essential domain orientation in histidine kinase EnvZ by targeted disulfide crosslinking. J Mol Biol 2003, 328: 409–418. 10.1016/S0022-2836(03)00275-4

Hamdan FF, Ward SD, Siddiqui NA, Bloodworth LM, Wess J: Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor. Biochemistry 2002, 41: 7647–7658. 10.1021/bi016029c

Guan L, Murphy FD, Kaback HR: Surface-exposed positions in the transmembrane helices of the lactose permease of Escherichia coli determined by intermolecular thiol cross-linking. Proc Natl Acad Sci USA 2002, 99: 3475–3480. 10.1073/pnas.052703699

Roy R, Laage R, Langosch D: Synaptobrevin transmembrane domain dimerization-revisited. Biochemistry 2004, 43: 4964–4970. 10.1021/bi0362875

Luo B-H, Springer TA, Takagi J: A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol 2004, 2: e153. 10.1371/journal.pbio.0020153

Yauch RL, Hemler ME: Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphatidylinositol 4-kinase. Biochem J 2000, 351: 629–637. 10.1042/0264-6021:3510629

Zhang XA, Bontrager AL, Hemler ME: TM4SF proteins associate with activated PKC and link PKC to specific beta1 integrins. J Biol Chem 2001, 276: 25005–25013. 10.1074/jbc.M102156200

Li W, Metcalf D, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, DeGrado WF, Bennett JS: A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci USA 2005, 102: 1424–1429. 10.1073/pnas.0409334102

Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P: A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 1984, 106: 765. 10.1021/ja00315a051

Kuhlman B, Baker D: Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA 2000, 97: 10383–10388. 10.1073/pnas.97.19.10383

Desmet J, De Maeyer M, Hazes B, Lasters I: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 1992, 356: 539–542. 10.1038/356539a0