Structural, optical and magnetic properties of pure and 3d metal dopant-incorporated SnO2 nanoparticles

RSC Advances - Tập 12 Số 41 - Trang 26712-26726
K. K. Supin1, Anson K. George2, Yogesh Kumar3,1, K. K. Thejas3,2, Guruprasad Mandal4, Anupama Chanda5, М. Vasundhara3,2,1
1Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
2Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
3Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
4Centre for Rural and Cryogenic Technologies, Jadavpur University, Kolkata, 700032, India
5Department of Physics, Dr Hari Singh Gour Central University, Sagar, 470003, India

Tóm tắt

We focused on the systematic study of the effect of Fe, Co and Ni substitution on the structural, optical and magnetic properties of SnO2 nanoparticles.

Từ khóa


Tài liệu tham khảo

Prinz, 1998, Science, 282, 1660, 10.1126/science.282.5394.1660

Wolf, 2001, Science, 294, 1488, 10.1126/science.1065389

Wang, 2004, J. Appl. Phys., 95, 8185, 10.1063/1.1748859

Verma, 2017, J. Solid State Chem., 246, 150, 10.1016/j.jssc.2016.11.018

Zhang, 2004, Nano Lett., 4, 403, 10.1021/nl034968f

Wang, 2006, Adv. Mater., 18, 645, 10.1002/adma.200501883

Wang, 2005, Chem. Mater., 17, 3899, 10.1021/cm050724f

Chu, 2011, Chem. Eng. J., 168, 955, 10.1016/j.cej.2011.02.029

Aslani, 2011, Appl. Surf. Sci., 257, 4056, 10.1016/j.apsusc.2010.11.174

Matsumoto, 2011, Science, 291, 854, 10.1126/science.1056186

Ogale, 2003, Phys. Rev. Lett., 91, 077205, 10.1103/PhysRevLett.91.077205

Fitzgerald, 2004, J. Appl. Phys., 95, 7390, 10.1063/1.1676026

Punnoose, 2004, Appl. Phys. Lett., 85, 1559, 10.1063/1.1786633

Punnoose, 2005, Phys. Rev. B: Condens. Matter Mater. Phys., 72, 054402, 10.1103/PhysRevB.72.054402

Hays, 2005, Phys. Rev. B: Condens. Matter Mater. Phys., 72, 075203, 10.1103/PhysRevB.72.075203

Coey, 2004, Appl. Phys. Lett., 84, 1332, 10.1063/1.1650041

Kimura, 2002, Appl. Phys. Lett., 80, 94, 10.1063/1.1430856

Sharma, 2011, Nanomater. Nanotechnol., 1, 6, 10.5772/50948

Adhikari, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 78, 024404, 10.1103/PhysRevB.78.024404

Hong, 2005, Phys. Rev. B: Condens. Matter Mater. Phys., 72, 045336, 10.1103/PhysRevB.72.045336

Hong, 2005, J. Phys.: Condens. Matter, 17, 6533

Chuah, 2012, Optoelectron. Adv. Mater., Rapid Commun., 6, 149

Chen, 2012, Sens. Actuators, B, 166, 61, 10.1016/j.snb.2011.12.018

Dehbashi, 2012, Int. J. Phys. Sci., 7, 5415

Ahmad, 2013, Iran. J. Energy Environ., 4, 49

Sharma, 2011, Nanomater. Nanotechnol., 1, 6, 10.5772/50948

Aragon, 2011, J. Raman Spectrosc., 42, 1081, 10.1002/jrs.2802

Ru, 1997, Appl. Phys. Lett., 71, 1792, 10.1063/1.119400

Music, 1991, J. Mater. Sci. Lett., 10, 197, 10.1007/BF00723804

Kuppan, 2014, J. Supercond. Novel Magn., 27, 1315, 10.1007/s10948-013-2457-0

Ramanathan, 2022, J. Appl. Electrochem., 52, 849, 10.1007/s10800-022-01676-z

Narasaiah, 2022, ACS Omega, 7, 15423, 10.1021/acsomega.1c07099

Wu, 2021, J. Mater. Chem. A, 9, 19554, 10.1039/D1TA04130D

Masuda, 2022, Sens. Actuators, B, 364, 131876, 10.1016/j.snb.2022.131876

Din, 2022, Crystals, 12, 614, 10.3390/cryst12050614

Ahmad, 2017, J. Alloys Compd., 720, 502, 10.1016/j.jallcom.2017.05.293

Aragon, 2016, J. Phys. D: Appl. Phys., 49, 155002, 10.1088/0022-3727/49/15/155002

Cai, 2019, Front. Chem., 7, 843, 10.3389/fchem.2019.00843

Hu, 2017, J. Mater. Sci., 52, 11554, 10.1007/s10853-017-1319-8

Malvankar, 2020, J. Electron. Mater., 49, 1872, 10.1007/s11664-019-07865-5

Singkammo, 2015, ACS Appl. Mater. Interfaces, 7, 3077, 10.1021/acsami.5b00161

Peercy, 1973, Phys. Rev. B: Solid State, 7, 2779, 10.1103/PhysRevB.7.2779

Dutta, 2012, J. Mater. Chem., 22, 24545, 10.1039/c2jm35274e

Yu, 1997, Phys. Rev. B: Condens. Matter Mater. Phys., 55, 2666, 10.1103/PhysRevB.55.2666

Abello, 1998, J. Solid State Chem., 135, 78, 10.1006/jssc.1997.7596

Wang, 2004, Solid State Commun., 130, 89, 10.1016/j.ssc.2004.01.003

Kar, 2011, J. Phys. Chem. C, 115, 118, 10.1021/jp110313b

Liu, 2013, Appl. Phys. Lett., 102, 031916, 10.1063/1.4789538

Kaur, 2012, Ceram. Int., 38, 5563, 10.1016/j.ceramint.2012.03.075

Faisal, 2015, J. Mol. Catal. A: Chem., 397, 19, 10.1016/j.molcata.2014.10.027

Gnanam, 2010, J. Sol-Gel Sci. Technol., 56, 128, 10.1007/s10971-010-2285-7

Mohamed, 2012, J. Alloys Compd., 510, 119, 10.1016/j.jallcom.2011.09.006

Choudhury, 2012, J. Lumin., 132, 178, 10.1016/j.jlumin.2011.08.020

Entradas, 2014, Mater. Chem. Phys., 147, 563, 10.1016/j.matchemphys.2014.05.032

Lima, 2014, J. Sol-Gel Sci. Technol., 72, 301, 10.1007/s10971-014-3310-z

Kim, 2004, J. Alloys Compd., 375, 259, 10.1016/j.jallcom.2003.11.044

Fang, 2008, J. Alloys Compd., 454, 261, 10.1016/j.jallcom.2006.12.014

Santara, 2011, J. Appl. Phys., 110, 114322, 10.1063/1.3665883

Choudhury, 2013, Int. Nano Lett., 3, 1, 10.1186/2228-5326-3-1

Liu, 2013, Appl. Phys. Lett., 102, 031916, 10.1063/1.4789538

Chetri, 2013, J. Appl. Phys., 113, 233514, 10.1063/1.4811374

Yamamot, 2012, J. Appl. Phys., 111, 094310, 10.1063/1.4710533

Akshay, 2019, New J. Chem., 43, 14786, 10.1039/C9NJ02884F

Akshay, 2019, Phys. Chem. Chem. Phys., 21, 12991, 10.1039/C9CP01351B

Akshay, 2019, New J. Chem., 43, 6048, 10.1039/C9NJ00275H

Akshay, 2019, Phys. Chem. Chem. Phys., 21, 2519, 10.1039/C8CP06875E

Akshay, 2018, RSC Adv., 8, 41994, 10.1039/C8RA07287F

Akshay, 2018, J. Phys. Chem. C, 122, 26592, 10.1021/acs.jpcc.8b06646

Aragan, 2010, J. Phys.: Condens. Matter, 22, 496003