Nghiên cứu cấu trúc, morphometric và miễn dịch mô học của củ khứu giác phụ ở thỏ

Brain Structure and Function - Tập 225 - Trang 203-226 - 2019
Paula R. Villamayor1, Jose Manuel Cifuentes1, Luis Quintela2, Ramiro Barcia3, Pablo Sanchez-Quinteiro1
1Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
2Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
3Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain

Tóm tắt

Củ khứu giác phụ (AOB) là trung tâm tích hợp thần kinh đầu tiên của hệ thống khứu giác phụ (VNS), chủ yếu liên quan đến việc phát hiện các hóa chất truyền thông. Mặc dù thỏ được sử dụng như một mô hình để nghiên cứu giao tiếp hóa học, nhưng các nghiên cứu này gặp khó khăn do thiếu kiến thức về địa hình, lớp màng, và các đặc tính hóa học thần kinh của AOB ở thỏ. Để lấp đầy khoảng trống này, chúng tôi đã sử dụng các phương pháp nhuộm mô học: đánh dấu lectin với Ulex europaeus (UEA-I), Bandeiraea simplicifolia (BSI-B4), và Lycopersicon esculentum (LEA), và một loạt các dấu ấn miễn dịch mô học. Các protein Gαi2/Gαo chống lại, chưa được nghiên cứu trước đó ở AOB của thỏ, được biểu hiện theo một mẫu vùng trước-sau. Điều này khiến Lagomorpha nằm trong số những nhóm động vật có vú nhỏ bảo tồn tiếp nhận khứu giác theo hai đường. Các kháng thể chống lại protein đánh dấu khứu giác (OMP), protein liên kết với sự phát triển-43 (GAP-43), glutaminase (GLS), protein liên kết vi ống-2 (MAP-2), protein axit fibrillarin đệm tế bào (GFAP), calbindin (CB), và calretinin (CR) xác định các lớp và các thành phần chính của AOB, cho thấy nhiều đặc điểm đặc thù của AOB ở thỏ. Sự đa dạng này được nhấn mạnh bởi sự hiện diện của một tổ chức độc đáo: bốn cụm tế bào thần kinh trong chất trắng củ khứu giác phụ, hai trong số đó chưa được đặc trưng ở bất kỳ loài nào (các nhóm γ và δ). Nghiên cứu morphometric của chúng tôi về AOB đã phát hiện ra sự khác biệt đáng kể giữa các giới tính về mật độ số lượng của các tế bào chính, với giá trị lớn hơn ở con cái, một mẫu hoàn toàn ngược lại với mẫu tìm thấy ở chuột. Tóm lại, thỏ sở hữu một AOB phát triển cao, với nhiều đặc điểm cụ thể nhấn mạnh vai trò quan trọng của giao tiếp hóa học trong loài này.

Từ khóa


Tài liệu tham khảo

Apfelbach R, Blanchard CD, Blanchard RJ et al (2005) The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci Biobehav Rev 29:1123–1144 Barrios AW, Nuñez G, Sanchez-Quinteiro P et al (2014) Anatomy, histochemistry, and immunohistochemistry of the olfactory subsystems in mice. Front Neuroanat 8:63 Ben-Shaul Y, Katz LC, Mooney R et al (2010) In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. PNAS 107:5172–5177 Bernhardt R, Matus A (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol 226:203–221 Bock P, Rohn K, Beineke A et al (2006) Site-specific population dynamics and variable olfactory marker protein expression in the postnatal canine olfactory epithelium. J Anat 215:522–535 Boehm U (2006) The vomeronasal system in mice: from the nose to the hypothalamus- and back! Semin Cell Dev Biol 17:471–479 Bouvier AC, Jacquinet C (2008) Pheromone in rabbits. Preliminary technical results on farm use in France. In: Xiccato G, Trocino A, Lukefahr SD (eds) 9th World rabbit congress. Verona, 2008. Proceedings, pp 303–308 Brennan PA, Zufall F (2006) Pheromonal communication in vertebrates. Nature 444:308–315 Briñón JG, Weruaga E, Crespo C et al (2001) Calretinin-, neurocalcin-, and parvalbumin-immunoreactive elements in the olfactory bulb of the hedgehog (Erinaceus europaeus). J Comp Neurol 429:554–570 Brown RE (1985) Effects of social isolation in adulthood on odor preferences and urine-marking in male rats. Behav Neural Biol 44:139–143 Charra R, Datiche F, Casthano A et al (2012) Brain processing of the mammary pheromone in newborn rabbits. Behav Brain Res 226:179–188 Chehrehasa F, Ekberg JA, St John JA (2014) A novel method using intranasal delivery of EdU demonstrates that accessory olfactory ensheathing cells respond to injury by proliferation. Neurosci Lett 563:90–95 Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6:204 Dennis JC, Smith TD, Bhatnagar KP et al (2004) Expression of neuron-specific markers by the vomeronasal neuroepithelium in six species of primates. Anat Rec 281:1190–1200 Dennis JC, Stilwell NK, Smith TD et al (2019) Is the mole rat vomeronasal organ functional? Anat Rec. https://doi.org/10.1002/ar.24060 Dulac C, Torello AT (2003) Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4:551–562 Farbman AI, Margolis FL (1980) Olfactory marker protein during ontogeny: immunohistochemical localization. Dev Biol 74:205–215 Frahm HD, Bhatnagar KP (1980) Comparative morphology of the accessory olfactory bulb in bats. J Anat 130:349–365 González-Mariscal G, Caba M, Martínez-Gómez M et al (2016) Mothers and offspring: the rabbit as a model system in the study of mammalian maternal behavior and sibling interactions. Horm Behav 77:30–41 Grus WE, Shi P, Zhang Y et al (2005) Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. PNAS 102:5767–5772 Gudden B (1870) Experimental untersuchungen über das peripherische und centrale nervensystem. Arch Psychiatr Nervenkr 11:693–723 Guillamón A, Segovia S (1997) Sex differences in the vomeronasal system. Brain Res Bull 44:377–382 Halpern M (1987) The organization and function of the vomeronasal system. Annu Rev Neurosci 10:325–362 Halpern M, Martínez-Marcos A (2003) Structure and function of the vomeronasal system: an update. Prog Neurobiol 70:245–318 Halpern M, Shapiro LS, Jia C (1995) Differential localization of G proteins in the opossum vomeronasal system. Brain Res 677:157–161 Hasui K, Takatsuka T, Sakamoto R et al (2003) Double autoimmunostaining with glycine treatment. J Histochem Cytochem 51:1169–1176 Holy TE (2018) The accessory olfactory system: innately specialized or microcosm of mammalian circuitry? Annu Rev Neurosci 41:501–525 Ihara S, Yoshikawa K, Touhara K (2013) Chemosensory signals and their receptors in the olfactory neural system. Neuroscience 254:45–60 Isogai S, Si S, Pont-Lezica L et al (2011) Molecular organization of vomeronasal chemoreception. Nature 478:241–245 Jacobowitz DM, Winsky L (1991) Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol 304:198–218 Jessell TM, Hynes MA, Dodd J (1990) Carbohydrates and carbohydrate-binding proteins in the nervous system. Annu Rev Neurosci 13:227–255 Jia C, Halpern M (1996) Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gi alpha 2 and G (o alpha)) and segregated projections to the accessory olfactory bulb. Brain Res 719:117–128 Jia C, Halpern M (2003) Calbindin D28 k immunoreactive neurons in vomeronasal organ and their projections to the accessory olfactory bulb in the rat. Brain Res 977:261–269 Jia C, Halpern M (2004) Calbindin D28k, parvalbumin, and calretinin immunoreactivity in the main and accessory olfactory bulbs of the gray short-tailed opossum, Monodelphis domestica. J Morphol 259:271–280 Keverne EB (2002) Pheromones, vomeronasal function, and gender-specific behavior. Cell 108:735–738 Kinzinger JH, Johnson EW, Bhatnagar KP et al (2005) Comparative study of lectin reactivity in the vomeronasal organ of human and nonhuman primates. Anat Rec 284:550–560 Kondoh D, Kamikawa A, Sasaki M et al (2017) Localization of α1-2 fucose glycan in the mouse olfactory pathway. Cells Tissues Organs 203:20–28 Kream RM, Davis BJ, Kawano T et al (1984) Substance P and catecholaminergic expression in neurons of the hamster main olfactory bulb. J Comp Neurol 222:140–154 Larriva-Sahd J (2008) The accessory olfactory bulb in the adult rat: a cytological study of its cell types, neuropil, neuronal modules, and interactions with the main olfactory system. J Comp Neurol 510:309–350 Larriva-Sahd J (2012) Cytological organization of the alpha component of the anterior olfactory nucleus and olfactory limbus. Front Neuroanat 6:23 Lazzari M, Bettini S, Franceschini V (2016) Immunocytochemical characterisation of ensheathing glia in the olfactory and vomeronasal systems of Ambystoma mexicanum (Caudata: Ambystomatidae). Brain Struct Funct 221:955–967 Lohman AHM (1963) The anterior olfactory lobe of the guinea pig. Acta Anat 45:9–109 Mackay-Sim A, Duvall D, Graves BM (1985) The West Indian manatee (Trichechus manatus) lacks a vomeronasal organ. Brain Behav Evol 27:186–194 Mandiyan VS, Coats JK, Shah NM (2005) Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8:1660–1662 Martínez-Marcos A, Lanuza E, Halpern M (2002) Neural substrates for processing chemosensory information in snakes. Brain Res Bull 57:543–546 Martín-López E, Corona R, López-Mascaraque L (2012) Postnatal characterization of cells in the accessory olfactory bulb of wild type and reeler mice. Front Neuroanat 6:15 Meisami E, Bhatnagar KP (1998) Structure and diversity in mammalian accessory olfactory bulb. Microsc Res Tech 43:476–499 Melo AI, González-Mariscal G (2010) Communication by olfactory signals in rabbits: its role in reproduction. Vitam Horm 83:351–371 Mohrhardt J, Nagel M, Fleck D et al (2018) Signal detection and coding in the accessory olfactory system. Chem Senses 43:667–695 Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278 Mori K (1983) Mitral cells in the rabbit accessory olfactory bulb: their morphology and response to LOT stimulation. Soc Neurosci Abst 9:1020 Mori K (1987) Monoclonal antibodies (2C5 and 4C9) against lactoseries carbohydrates identify subsets of olfactory and vomeronasal receptor cells and their axons in the rabbit. Brain Res 408:215–221 Mori K, Imamura K, Fujita SC et al (1987) Projections of two subclasses of vomeronasal nerve fibers to the accessory olfactory bulb in the rabbit. Neuroscience 20:259–278 Mouton PR (2002) Principles and practices of unbiased stereology. An introduction for bioscientists. John Hopkins University Press, Baltimore Murphy WJ, Eizirik E, O’Brien SJ et al (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351 Nakajima T, Sakaue M, Kato M et al (1998) Immunohistochemical and enzyme-histochemical study on the accessory olfactory bulb of the dog. Anat Rec 252:393–402 Ngwenya A, Patzke N, Ihunwo AO et al (2011) Organisation and chemical neuroanatomy of the African elephant (Loxodonta africana) olfactory bulb. Brain Struct Funct 216:403–416 Pardo-Bellver C, Martínez-Bellver S, Martínez-García F et al (2017) Synchronized activity in the main and accessory olfactory bulbs and vomeronasal amygdala elicited by chemical signals in freely behaving mice. Sci Rep 7:9924 Park C, Ahn M, Lee JY et al (2014) A morphological study of the vomeronasal organ and the accessory olfactory bulb in the Korean roe deer, Capreolus pygargus. Acta Histochem 116:258–264 Porteros A, Arévalo R, Crespo C et al (1995) Calbindin D-28k immunoreactivity in the rat accessory olfactory bulb. Brain Res 689:93–100 Pro-Sistiaga P, Mohedano-Moriano A, Ubeda-Bañon I et al (2007) Convergence of olfactory and vomeronasal projections in the rat basal telencephalon. J Comp Neurol 504:346–362 Quaglino E, Giustetto M, Panzanelli P et al (1999) Immunocytochemical localization of glutamate and gamma-aminobutyric acid in the accessory olfactory bulb of the rat. J Comp Neurol 408:61–72 Ramakers GJ, Verhaagen J, Oestreicher AB et al (1992) Immunolocalization of B-50 (GAP-43) in the mouse olfactory bulb: predominant presence in preterminal axons. J Neurocytol 21:853–869 Ramón y Cajal S (1904) Corteza Olfativa. In: Textura del Sistema Nervioso Central del Hombre y los Vertebrados, vol 2. Imprenta y Librería Nicolas Moya, Spain, pp 913–941 Ramos-Vara JA, Miller MA (2006) Comparison of two polymers based immunohistochemical detection systems: ENVISION + and ImmPRESS. J Microsc 224:135–139 Rodewald A, Gisder D, Gebhart VM et al (2016) Distribution of olfactory marker protein in the rat vomeronasal organ. J Chem Neuroanat 77:19–23 Rodriguez I, Feinstein P, Mombaerts P (1999) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97:199–208 Rodriguez I, Greer CA, Mok MY et al (2000) A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26:18–19 Salazar I, Sanchez-Quinteiro P (1998) Lectin binding patterns in the vomeronasal organ and accessory olfactory bulb of the rat. Anat Embryol 198:331–339 Salazar I, Sanchez-Quinteiro P (2011) A detailed morphological study of the vomeronasal organ and the accessory olfactory bulb of cats. Microsc Res Tech 74:1109–1120 Salazar I, Sanchez-Quinteiro P, Cifuentes JM et al (1998) The accessory olfactory bulb of the mink, Mustela vison: a morphological and lectin histochemical study. Anat Histol Embryol 27:297–300 Salazar I, Sanchez-Quinteiro P, Lombardero M et al (2000) A descriptive and comparative lectin histochemical study of the vomeronasal system in pigs and sheep. J Anat 196:15–22 Salazar I, Sanchez-Quinteiro P, Lombardero M et al (2001) Histochemical identification of carbohydrate moieties in the accessory olfactory bulb of the mouse using a panel of lectins. Chem Senses 26:645–652 Salazar I, Sanchez-Quinteiro P, Cifuentes JM et al (2006) General organization of the perinatal and adult accessory olfactory bulb in mice. Anat Rec 288:1009–1025 Salazar I, Sanchez-Quinteiro P, Alemañ N et al (2007) Diversity of the vomeronasal system in mammals: the singularities of the sheep model. Microsc Res Tec 70:752–762 Salazar I, Cifuentes JM, Sanchez-Quinteiro P (2013) Morphological and immunohistochemical features of the vomeronasal system in dogs. Anat Rec 296:146–155 Sam M, Vora S, Malnic B et al (2001) Odorants may arouse instinctive behaviours. Nature 412:142 Schaal B, Coureaud G, Langlois D et al (2003) Chemical and behavioural characterization of the rabbit mammary pheromone. Nature 424:68–72 Schneider NY, Fletcher TP, Shaw G et al (2012) Goα expression in the vomeronasal organ and olfactory bulb of the tammar wallaby. Chem Senses 37:567–577 Schneider NY, Piccin C, Datiche F et al (2016) Spontaneous brain processing of the mammary pheromone in rabbit neonates prior to milk intake. Behav Brain Res 313:191–200 Schneider NY, Datiche F, Coureaud G (2018) Brain anatomy of the 4-day-old European Rabbit. J Anat 232:747–767 Segovia S, Garcia-Falgueras A, Carrillo B et al (2006) Sexual dimorphism in the vomeronasal system of the rabbit. Brain Res 1102:52–62 Shapiro LS, Ee PL, Halpern M (1995) Lectin histochemical identification of carbohydrate moieties in opossum chemosensory systems during development, with special emphasis on VVA-identified subdivisions in the accessory olfactory bulb. J Morphol 224:331–349 Shinohara H, Asano T, Kato K (1992) Differential localization of G-proteins Gi and Go in the accessory olfactory bulb of the rat. J Neurosci 12:1275–1279 Shnayder L, Schwanzel-Fukuda M, Halpern M (1993) Differential OMP expression in opossum accessory olfactory bulb. NeuroReport 5:193–196 Skeen LC, Hall WC (1977) Efferent projections of the main and the accessory olfactory bulb in the tree shrew (Tupaia glis). J Comp Neurol 172:1–35 Slotnick B (2001) Animal cognition and the rat olfactory system. Trends Cogn Sci 5:216–222 Smithson LJ, Kawaja MD (2009) A comparative examination of biomarkers for olfactory ensheathing cells in cats and guinea pigs. Brain Res 1284:41–53 Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136 Suarez R, Mpodozis J (2009) Heterogeneities of size and sexual dimorphism between the subdomains of the lateral-innervated accessory olfactory bulb (AOB) of Octodon degus (Rodentia: Hystricognathi). Behav Brain Res 198:306–312 Suarez R, Villalón A, Künzle H et al (2009) Transposition and Intermingling of Galphai2 and Galphao afferences into single vomeronasal glomeruli in the Madagascan lesser Tenrec Echinops telfairi. PLoS ONE 4:e8005 Suarez R, Fernández-Aburto P, Manger RR et al (2011a) Deterioration of the Gαo vomeronasal pathway in sexually dimorphic mammals. PLoS One 6:e2643 Suarez R, Santibáñez R, Parra D et al (2011b) Share and differential traits in the accessory olfactory bulb of caviomorph rodents with particular reference to the semiaquatic capybara. J Anat 218:558–565 Swaney WT, Keverne EB (2009) The evolution of pheromonal communication. Behav Brain Res 200:239–247 Switzer RC 3rd, Johnson JI, Kirsch JA (1980) Phylogeny through brain traits. Relation of lateral olfactory tract fibers to the accessory olfactory formation as a palimpsest of mammalian descent. Brain Behav Evol 17:339–363 Szendrő Z, Szendrő K, Zotte AD (2012) Management of reproduction on small, medium and large rabbit farms: a review. Asian-Australas J Anim Sci 25:738–748 Szendrő Z, Mikó A, Odermatt M et al (2013) Comparison of performance and welfare of single-caged and group-housed rabbit does. Animal 7:463–468 Takami S, Graziadei PP (1991) Light microscopic Golgi study of mitral/tufted cells in the accessory olfactory bulb of the adult rat. J Comp Neurol 311:65–83 Takigami S, Mori Y, Ichikawa M (2000) Projection pattern of vomeronasal neurons to the accessory olfactory bulb in goats. Chem Senses 25:387–393 Takigami S, Mori Y, Tanioka Y et al (2004) Morphological evidence for two types of Mammalian vomeronasal system. Chem Senses 29:301–310 Tolivia J, Tolivia D, Navarro A (1998) New technique for differential staining of myelinated fibers and nerve cells on paraffin sections. Anat Rec 222:437–440 Trinh K, Storm DR (2003) Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 6:519–525 Trotier D, Eloit C, Wassef M et al (2000) The vomeronasal cavity in adult humans. Chem Senses 25:369–380 Trouillet AC, Keller M, Weiss J et al (2019) Central role of G protein Gαi2 and Gαi2 + vomeronasal neurons in balancing territorial and infant-directed aggression of male mice. PNAS 116:5135–5143 Valverde F, López-Mascaraque L, De Carlos JA (1989) Structure of the nucleus olfactorius anterior of the hedgehog (Erinaceus europaeus). J Comp Neurol 279:581–600 Vega MD, Barrio M, Quintela LA et al (2012) Evolución del manejo reproductivo en cunicultura. ITEA 108:172–190 Verga M, Luzi F, Carenzi C (2007) Effects of husbandry and management systems on physiology and behavior of farmed and laboratory rabbits. Horm Behav 52:122–129 Verhaagen J, Oestreicher AB, Gispen WH et al (1989) The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats. J Neurosci 9:683–691 Villamayor PR, Cifuentes JM, Fdz-de-Troconiz P et al (2018) Morphological and immunohistochemical study of the rabbit vomeronasal organ. J Anat 233:814–827 Wagner S, Gresser AL, Torello AT et al (2006) A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb. Neuron 50:697–709 Wharton Young M (1936) The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (Lepus cuniculus). J Comp Neurol 65:295–401 Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge Wysocki CJ (1979) Neurobehavioral evidence for the involvement of the vomeronasal system in mammalian reproduction. Neurosci Biobehav Rev 3:301–341 Yokosuka M (2012) Histological properties of the glomerular layer in the mouse accessory olfactory bulb. Exp Anim 61:13–24 Yoon H, Enquist LW, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123:669–682 Zufall F, Leinders-Zufall T (2007) Mammalian pheromone sensing. Curr Opin Neurobiol 17:483–489