Đặc trưng cấu trúc, từ tính và quang xúc tác của các hạt nano Bi1−x La x FeO3 tổng hợp bằng phương pháp phân hủy nhiệt

Bulletin of Materials Science - Tập 40 - Trang 93-100 - 2017
S M MASOUDPANAH1, S M MIRKAZEMI1, R BAGHERIYEH1, F JABBARI1, F BAYAT1
1School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran

Tóm tắt

Các hạt nano bismuth ferrite (Bi$_{1-x}$La$_{x}$FeO$_{3}$) bị thay thế bằng La đơn pha đã được tổng hợp thông qua quá trình phân hủy nhiệt của một tiền chất glyoxylate. Sự chuyển đổi cấu trúc tinh thể của BiFeO$_{3}$ từ cấu trúc lục giác (R3c) sang cấu trúc lập phương (Pm$ar{3}$m) do sự bổ sung La đã được xác nhận bằng các phương pháp phân tích nhiễu xạ tia X và phổ hồng ngoại. Hơn nữa, các hạt nano Bi$_{1-x}$La$_{x}$FeO$_{3}$ cho thấy hành vi từ tính yếu với từ trường ferrimagnetism, trong khi độ từ hóa tăng từ 0.18 đến 0.48 emu g$^{-1}$ với sự thay thế La. Các hạt nano Bi$_{1-x}$La$_{x}$FeO$_{3}$ thể hiện sự hấp thụ mạnh trong vùng ánh sáng khả kiến với khoảng cách quang học được tính toán từ biểu đồ Tauc trong khoảng 2.19–2.15 eV. Hơn nữa, tác động của sự thay thế La lên quá trình phân hủy quang của thuốc nhuộm methylene blue (MB) dưới ánh sáng khả kiến cũng đã được nghiên cứu. Quá trình phân hủy thuốc nhuộm MB đã được cải thiện từ 64% lên khoảng 99% khi tăng cường sự thay thế La từ x = 0 đến 0.1 và sau đó giảm xuống còn 8% khi x = 0.15.

Từ khóa

#Bismuth ferrite #La substitution #Nanoparticles #Photodegradation #Methylene blue #Magnetic properties

Tài liệu tham khảo

Soltani T and Entezari M H 2013 J. Mol. Catal. A Chem. 377 197 Soltani T and Entezari M H 2013 Ultrason. Sonochem. 20 1245 Jiang L M and Zhou G 2012 Mater. Sci. Semicon. Proc. 15 108 Gole J L, Stout J D, Burda C, Lou Y B and Chen X B 2004 J. Phys. Chem. B 108 1230 Casbeer E, Sharma V K and Li X Z 2012 Sep. Purif. Technol. 87 1 Gao F, Chen X et al 2007, Adv. Mater. 19 2889 Catalan G and Scott J F 2009 Adv. Mater. 21 2463 Safi R and Shokrollahi H 2012 Prog. Solid State Chem. 40 6 Park T J, Papaefthymiou G C, Viescas A J, Moodenbaugh A R and Wong S S 2007 Nano Lett. 7 766 Yao Q R, Cai J, Zhou H Y, Rao G H, Wang Z M and Deng J Q 2015 J. Alloys Compd. 633 170 Liu W, Tan G, Dong G, Ren H and Xia A 2015 Mater. Lett. 142 27 Yan X, Chen J, Qi Y, Cheng J and Meng Z 2010 J. Eur. Ceram. Soc. 30 265 Liu Z, Qi Y and Lu C 2010 J. Mater. Sci. Mater. Electron. 21 380 He J, Guo R, Fang L, Dong W, Zheng F and Shen M 2013 Mater. Res. Bull. 48 3017 Masoudpanah S M, Mirkazemin S M, Shabani S and Taheri Dolat Abadi P 2015 Ceram. Int. 41 9642 Das N, Majumdar R, Sen A and Maiti H S 2007 Mater. Lett. 61 2100 Huang J, Tan G, Yang W, Zhang L, Ren H and Xia A 2014 Mater. Sci. Semicond. Process. 25 84 Gong L, Zhou Z, Wang S and Wang B Mater. Sci. Semicond. Process. 16 288 Vanga P R, Mangalaraja R V and Ashok M 2015 Mater. Sci. Semicond. Process. 40 796 Hassnain Jaffari G, Samad A et al 2015, J. Alloys Compd. 644 893 Dahiya R, Agarwal A, Sanghi S, Hooda A and Godara P 2015 J. Magn. Magn. Mater. 385 175 Al-Haj Mansour 2010, Cryst. Res. Technol. 45 89 Dhanalakshmi R, Muneeswaran M, Shalini K and Giridharan N V 2016 Mater. Lett. 165 205 Sakar M, Balakumar S, Saravanan P and Bharathkumar S 2015 Nanoscale 7 10667 Shabani S, Mirkazemi S M, Masoudpanah S M and Taheri Dolat Abadi P 2014 J. Supercond. Nov. Magn. 27 2795 Khodabakhsh M, Sen C, Kassaf H, Gulun M A and Misirlioglu I B 2014 J. Alloys Compd. 604 117 Nalwa K S, Garg A and Upadhyaya A 2008 Mater. Lett. 62 878 Arnold D C 2015 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62 62 Shannon R D 1976 Acta Crystallogr. A 32 751 Zhang X, Sui Y, Wang X, Wang Y and Wang Z 2010 J. Alloys Compd. 507 157 Chen P, Xu X et al 2010, Nano Lett. 10 4526 Bielecki J, Svedlindh P et al 2012, Phys. Rev. B 86 184422 Chauhan S, Arora M, Sati P C, Chhoker S, Katyal S C and Kumar M 2013 Ceram. Int. 39 6399 Basiri M H, Shokrollahi H and Isapour Gh 2014, J. Magn. Magn. Mater. 354 184 Gao H, Tian J, Zheng H, Tan F and Zhang W 2015 J. Mater. Sci. Mater. Electron. 26 700 Li S, Lin Y H, Zhang B P, Wang Y and Nan C W 2010 J. Phys. Chem. C 114 2903 Seidel J, Luo W and Suresha S J 2012 Nat. Commun. 3 799 Wang H, Zheng Y, Cai M, Huang H and Chan H W 2009 Solid State Commun. 149 641 Pei Y L and Zhang C 2013 J. Alloys Compd. 570 57 Feng J, Su L, Ma Y, Ren C, Guo Q and Chen X 2013 Chem. Eng. J. 221 16 Guo R, Fang L, Dong W, Zheng F and Shen M 2010 J. Phys. Chem. C 114 21390 Monch W 2004 Electronic properties of semiconductor interfaces (New York: Springer-Verlag) Tong G, Du F, Wu W, Wu R, Liu F and Liang Y 2013 J. Mater. Chem. B 1 2647 Bhardwaj A, Burbure N V, Gamalski A and Rohrer G S 2010 Chem. Mater. 22 3527 Hao C, Wen F, Xiang J, Hou H, Lv W, Lv Y, Hu W and Liu Z 2014 Mater. Res. Bull. 50 369