Structural, impedance, dielectric and modulus analysis of LiNi 1-x-y-0.02 Mg 0.02 Co x Zn y O 2 cathode materials for lithium-ion batteries

N. Murali1,2, S.J. Margarette2, V. Kondala Rao2, V. Veeraiah2
1Advanced Analytical Laboratory, DST-PURSE Programme, Andhra University, India
2Department of Physics, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India

Tài liệu tham khảo

Dahn, 1990, Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure, Solid State Ionics, 44, 87, 10.1016/0167-2738(90)90049-W Chang, 1998, Particulate sol-gel synthesis and electrochemical characterization of LiMO2 (M=Ni, Ni0.75 Co0.25) powders, J. Power Sources, 75, 44, 10.1016/S0378-7753(98)00091-3 Moshtev, 1995, The LiNiO2 solid solution as a cathode material for rechargeable lithium batteries, J. Power Sources, 54, 329, 10.1016/0378-7753(94)02094-J Kanno, 1994, Phase relationship and lithium deintercalation in lithium nickel oxides, J. Solid State Chem., 110, 216, 10.1006/jssc.1994.1162 Guilmard, 2003, Effects of aluminum on the structural and electrochemical properties of LiNiO2, J. Power Sources, 115, 305, 10.1016/S0378-7753(03)00012-0 Xiao, 2008, Layered mixed transition metal oxide cathodes with reduced cobalt content for lithium ion batteries, Chem. Mater., 20, 7454, 10.1021/cm802316d Subramanian, 2002, Preparation and characterization of LiNi0.7Co0.2Ti0.05M0.05O2 (M=Mg, Al and Zn) systems as cathode materials for lithium batteries, Solid State Ionics, 148, 351, 10.1016/S0167-2738(02)00073-5 Kalyani, 2005, Various aspects of LiNiO2 chemistry: a review, Sci. Tech. Adv. Mater., 6, 689, 10.1016/j.stam.2005.06.001 Fujimoto, 2011, Charge-discharge properties of a layered-type Li(Ni,Co,Ti)O2 powder library, Sci. Technol. Adv. Mater., 12, 1, 10.1088/1468-6996/12/5/054203 Ju, 2008, Fine-sized LiNi0.8Co0.15Mn0.05O2 cathode powders prepared by combined process of gas-phase reaction and solid-state reaction methods, J. Power Sources, 178, 387, 10.1016/j.jpowsour.2007.11.112 Ohzuku, 1993, Electrochemistry and structural chemistry of LiNiO2 (R3-m) for 4 Volt secondary lithium cells, J. Electrochem. Soc., 140, 1862, 10.1149/1.2220730 Ge, 2006, Synthesis and characterization of LiCo0.3−xGaxNi0.7O2 (x = 0, 0.05) as a cathode material for lithium ion battery, Mater. Chem. Phys., 100, 217, 10.1016/j.matchemphys.2005.12.039 1995 Sun, 1997, Synthesis of LiNiO2 powders by a sol-gel method, Synthesis of LiNiO2 powders by a sol-gel method, J. Mater. Sci. Lett., 16, 30, 10.1023/A:1018532313681 Zhong, 2006, Characteristics and electrochemical performance of cathode material Co-coated LiNiO2 for Li-ion batteries, Trans. Nonferrous Met. Soc. China, 16, 137, 10.1016/S1003-6326(06)60024-1 Sathiyamoorthi, 2007, Synthesis, characterization and electrochemical behavior of LiNi1-xBaxO2 (x=0.0, 0.1, 0.2, 0.3 and 0.5) cathode materials, Electrochem. Commun., 9, 416, 10.1016/j.elecom.2006.10.005 Sathiyamoorthi, 2008, Synthesis, characterization and electrochemical studies of LiNi0⋅8M0⋅2O2 cathode material for rechargeable lithium batteries, Bull. Mater. Sci., 31, 441, 10.1007/s12034-008-0069-2 Choi, 1994, Synthesis of LiNiO2 powders by a sol-gel method, Conditions for neglecting space charge effects on distributions of point defects and I-V relations, Solid State Ionics, 89, 43, 10.1016/0167-2738(96)00269-X Nithya, 2011, Synthesis of high voltage (4.9 V) cycling LiNixCoyMn1-x-yO2 cathode materials for lithium rechargeable batteries, Phys. Chem. Chem. Phys., 13, 6125, 10.1039/c0cp02258f Li, 2008, Synthesis and characterization of LiNi1−xCoxO2 for lithium batteries by a novel method, Mater. Chem. Phys., 107, 171, 10.1016/j.matchemphys.2007.06.069 Gopukumar, 2003, Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells, Solid State Ionics, 159, 223, 10.1016/S0167-2738(03)00081-X Rougier, 1997, Vibrational spectroscopy and electrochemical properties of LiNi0.7Co0.3O2 cathode material for rechargeable lithium batteries, Ionics, 3, 170, 10.1007/BF02375613 Sathiyamoorthi, 2007, Influence of Mg doping on the performance of LiNiO2 matrix ceramic nanoparticles in high-voltage lithium-ion cells, J. Power Sources, 171, 922, 10.1016/j.jpowsour.2007.06.023 Wang, 2012, Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries, Int. J. Electrochem. Sci., 7, 345, 10.1016/S1452-3981(23)13343-8 Itagaki, 2005, LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy, J. Power Sources, 148, 78, 10.1016/j.jpowsour.2005.02.007 Andre, 2011, Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation, J. Power Sources, 196, 5334, 10.1016/j.jpowsour.2010.12.102 Ju, 2013, Revisiting the electrochemical impedance behavior of the LiFePO4/C cathode, J. Chem. Sci., 125, 687 Barik, 2011, Ac impedance spectroscopy and conductivity studies of Ba0.8Sr0.2TiO3 ceramics, Adv. Mater. Lett., 2, 419, 10.5185/amlett.2011.2228 Nageswara Rao, 2014, Electrical and dielectric properties of rare earth oxides coated LiCoO2 particles, Ionics, 20, 175, 10.1007/s11581-013-0973-3 Senthil Kumar, 2014, Impact of cerium doping on the structural and electrical properties of lithium nickel manganese oxide (LiNi0.5Mn0.5O2), Int. J. ChemTech Res., 6, 5252