Structural health monitoring research under varying temperature condition: a review

Journal of Civil Structural Health Monitoring - Tập 11 Số 1 - Trang 149-173 - 2021
Qinghua Han1, Qian Ma2, Jie Xu1, Ming Liu3
1Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China Earthquake Administration, Key Laboratory of Coast Civil Structure Safety of Ministry of Education, School of Civil Engineering, Tianjin University, Tianjin, 300350, China
2Structural Engineering, School of Civil Engineering, Tianjin University, Tianjin, 300350, China
3Civil Engineering, School of Civil Engineering, Tianjin University, Tianjin, 300350, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chang PC, Flatau A, Liu SC (2003) Review paper: health monitoring of civil infrastructure. Struct Health Monit 2(3):257–267. https://doi.org/10.1177/1475921703036169

Ou JP, Li H (2010) Structural health monitoring in mainland china: review and future trends. Struct Health Monit 9(3):219–231. https://doi.org/10.1177/1475921710365269

Goyal D, Pabla BS (2016) The vibration monitoring methods and signal processing techniques for structural health monitoring: a review. Arch Comput Method Eng 23(4):585–594. https://doi.org/10.1007/s11831-015-9145-0

Das S, Saha P, Patro SK (2016) Vibration-based damage detection techniques used for health monitoring of structures: a review. J Civ Struct Health Monit 6(3):477–507. https://doi.org/10.1007/s13349-016-0168-5

João PS, Cremona C, André D et al (2015) Static-based early-damage detection using symbolic data analysis and unsupervised learning methods. Front Struct Civ Eng 9(1):1–16. https://doi.org/10.1007/s11709-014-0277-3

Eun HC, Park SY, Lee MS (2013) Static-based damage detection using measured strain and deflection data. Appl Mech Mater 256–259:1097–1100. https://doi.org/10.1007/s11709-014-0277-3

Kullaa J (2001) Elimination of environmental influences from damage sensitive features in a structural health monitoring systems. Struct Health Monit Demands Chall. https://doi.org/10.1177/1045389X08096050

Farrar CR, Doebling SW, Cornwell PJ et al (1996) Variability of modal parameters measured on the Alamosa Canyon Bridge. Proc SPIE 3089

Cornwell P, Farrar CR, Doebling SW et al (1999) Environmental variability of modal properties. Exp Tech 23(6):45–48. https://doi.org/10.1111/j.1747-1567.1999.tb01320.x

Duan YF, Li Y, Xiang YQ (2011) Strain-temperature correlation analysis of a tied arch bridge using monitoring data. In: 2011 international conference on multimedia technology. IEEE, Piscataway, pp 6025–6028. https://doi.org/10.1109/ICMT.2011.6002979

Ding Y, Li AQ (2011) Assessment of bridge expansion joints using long-term displacement measurement under changing environmental conditions. Front Struct Civ Eng 5(3):37–380. https://doi.org/10.1007/s11709-011-0122-x

Xia Y, Chen B, Weng S et al (2012) Temperature effect on vibration properties of civil structures: a literature review and case studies. J Civ Struct Health Monit 2(1):29–46. https://doi.org/10.1007/s13349-011-0015-7

Li H, Zhang DY, Bao YQ et al (2012) A numerical investigation of temperature effect on modal parameters of the China National Aquatics Center. Adv Struct Eng 15(7):1139–1153. https://doi.org/10.1260/1369-4332.15.7.1139

Xia Y, Ha H, Zanardo G et al (2006) Long term vibration monitoring of an RC slab: temperature and humidity effect. Eng Struc 28(3):441–452. https://doi.org/10.1016/j.engstruct.2005.09.001

Moaveni B, Behmanesh I (2012) Effects of changing ambient temperature on finite element model updating of the Dowling Hall Footbridge. Eng Struct 43(2012):58–68. https://doi.org/10.1016/j.engstruct.2012.05.009

Regni M, Arezzo D, Carbonari S et al (2018) Effect of environmental conditions on the modal response of a 10-story reinforced concrete tower. Shock Vib. https://doi.org/10.1016/j.engstruct.2012.05.009

Kita A, Cavalagli N, Ubertini F (2019) Temperature effects on static and dynamic behavior of Consoli Palace in Gubbio, Italy. Mech Syst Signal Process 120:180–202. https://doi.org/10.1016/j.ymssp.2018.10.021

Jiao YB, Liu HB, Wang XQ et al (2014) Temperature effect on mechanical properties and damage identification of concrete structure. Adv Mater Sci Eng 2014:1–10. https://doi.org/10.1155/2014/191360

Zhao DX, Wu ZS (2007) Simulation of the effect of temperature variation on damage detection in a long-span cable-stayed bridge. Struct Health Monit 6(3):177–189. https://doi.org/10.1177/1475921707081107

Yan AM, Kerschen G, DeBoe P et al (2005) Structural damage diagnosis under changing environmental conditions—part 1: linear analysis. J Mech Syst Signal Process 19(4):847–864. https://doi.org/10.1016/j.ymssp.2004.12.002

Deraemaeker A, Reynders E, Roeck GD et al (2007) Vibration-based structural health monitoring using output-only measurements under changing environment. Mech Syst Signal Process 22(1):34–56. https://doi.org/10.1016/j.ymssp.2007.07.004

Meruane V, Heylen W (2011) Structural damage assessment under varying temperature conditions. Struct Health Monit 11(3):345–357. https://doi.org/10.1177/1475921711419995

Giraldo DF, Dyke SJ, Caicedo JM (2006) Damage detection accommodating varying environmental conditions. Struct Health Monit 5(2):155–172. https://doi.org/10.1177/1475921706057987

Gu JF, Gül M, Wu X (2017) Damage detection under varying temperature using artificial neural networks. Struc Control Health Monit 24(11):e1998. https://doi.org/10.1002/stc.1998

Liang Y, Li D, Song G et al (2018) Frequency Co-integration-based damage detection for bridges under the influence of environmental temperature variation. Measurement 125(2018):163–175. https://doi.org/10.1016/j.measurement.2018.04.034

Huang MS, Gül M, Zhu HP (2018) Vibration-based structural damage identification under varying temperature effects. J Aerosp Eng 31(3):4018014. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000829

Huang MS, Cheng SX, Zhang HY et al (2019) Structural damage identification based on PSO-CS hybrid algorithm under temperature variations. Int J Struct Stab Dyn 19(11):1950139. https://doi.org/10.1142/S0219455419501396

Peeters B, Maeck J, Roeck GD (2001) Vibration-based damage detection in civil engineering: excitation sources and temperature effects. Smart Mater Struct 10(3):518–527. https://doi.org/10.1088/0964-1726/10/3/314

Fu Y, DeWolf JT (2001) Monitoring and analysis of a bridge with partially restrained bearings. J Bridge Eng 6(1):23–29. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(23)

Alampalli S (1998) Influence of in-service environment on modal parameters. In: Proceedings of SPIE - the international society for optical engineering. SPIE, Washington, pp 111–116

Kim JT, Park JH, Lee BJ (2007) Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Eng Struct 29(7):1354–1365. https://doi.org/10.1016/j.engstruct.2006.07.024

Ni YQ, Fan KQ, Zheng G et al (2005) Automatic modal identification and variability in measured modal vectors of a cable-stayed bridge. Struct Eng Mech 19:123–139. https://doi.org/10.12989/sem.2005.19.2.123

Balmes E, Basseville M, Bourquin F et al (2008) Merging sensor data from multiple temperature scenarios for vibration monitoring of civil structures. Struct Health Monit 7(2):129–142. https://doi.org/10.1177/1475921708089823

Moser P, Moaveni B (2011) Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge. Mech Syst Signal Process 25(7):2336–2357. https://doi.org/10.1016/j.ymssp.2011.03.005

Zhou HF, Ni YQ, Ko JM (2010) Constructing input to neural networks for modeling temperature-caused modal variability: mean temperatures, effective temperatures, and principal components of temperatures. Eng Struct 32(6):1747–1759. https://doi.org/10.1016/j.engstruct.2010.02.026

Ni YQ, Xia Y, Liao WY et al (2009) Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower. Struct Control Health Monit 16(1):73–98. https://doi.org/10.1002/stc.303

Xia Y, Ni YQ, Ko JM et al (2008) Development of a structural health monitoring benchmark problem for high-rise slender structures. Adv Sci Technol 56:489–494. https://doi.org/10.4028/www.scientific.net/AST.56.489

Ubertini F, Comanducci G, Cavalagli N et al (2016) Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mech Syst Signal Process 82:307–322. https://doi.org/10.1016/j.ymssp.2016.05.025

Peeters B, Roeck GD (2001) One-year monitoring of the Z24-Bridge: environmental effects versus damage events. Earthq Eng Struct Dyn 30(2):149–171. https://doi.org/10.1002/1096-9845(200102)30:23.0.CO;2-Z

Ni YQ, Hua XG, Fan KQ et al (2005) Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Eng Struct 27(12):1762–1773. https://doi.org/10.1016/j.engstruct.2005.02.020

Desjardins SL, Londono NA, Lau DT et al (2006) Real-time data processing, analysis and visualization for structural monitoring of the confederation bridge. Adv Struct Eng 9(1):141–157. https://doi.org/10.1260/136943306776232864

Liu CY, DeWolf JT (2007) Effect of temperature on modal variability of a curved concrete bridge under ambient loads. J Struc Eng 133(12):1742–1751. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1742)

Nayeri RD, Masri SF, Ghanem RG et al (2008) A novel approach for the structural identification and monitoring of a full-scale 17-story building based on ambient vibration measurements. Smart Mater Struct 17(2):1–19. https://doi.org/10.1088/0964-1726/17/2/025006

Li H, Li SL, Ou JP et al (2010) Modal identification of bridges under varying environmental conditions: temperature and wind effects. Struct Control Health Monit 17(5):499–512. https://doi.org/10.1002/stc.319

Yuen KV, Kuok SC (2010) Ambient interference in long-term monitoring of buildings. Eng Struct 32(8):2379–2386. https://doi.org/10.1016/j.engstruct.2010.04.012

Faravelli L, Ubertini F, Fuggini C (2011) System identification of a super high-rise building via a stochastic subspace approach. Smart Struct Syst 7(2):133–152. https://doi.org/10.12989/sss.2011.7.2.133

Yarnold MT (2013) Temperature-based structural identification and health monitoring for long-span bridges. Dissertation, Drexel University.

Yarnold MT, Franklin LM, Aktan AE (2015) Temperature-based structural identification of long-span bridges. J Struct Eng 141(11):04015027. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001270

Yarnold MT, Fl M (2015) Temperature-based structural health monitoring baseline for long-span bridges. Eng Struct 86:157–167. https://doi.org/10.1016/j.engstruct.2014.12.042

Murphy B, Yarnold MT (2018) Temperature-driven structural identification of a steel girder bridge with an integral abutment. Eng Struct 155:209–221. https://doi.org/10.1016/j.engstruct.2017.10.074

Lyu M, Zhu X, Yang Q (2017) Connection stiffness identification of historic timber buildings using temperature-based sensitivity analysis. Eng Struct 131:180–191. https://doi.org/10.1016/j.engstruct.2016.11.012

Xu X, Ren Y, Huang Q et al (2020) Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies. J Civ Struct Health Monit 10(3):527–541. https://doi.org/10.1007/s13349-020-00402-7

Xu X, Huang Q, Ren Y et al (2019) Modeling and separation of thermal effects from cable-stayed bridge response. J Bridge Eng 24(5):04019028. https://doi.org/10.1061/(asce)be.1943-5592.0001387

Zhou Y, Sun L (2019) Insights into temperature effects on structural deformation of a cable-stayed bridge based on structural health monitoring. Struct Health Monit 18(3):778–791. https://doi.org/10.1177/1475921718773954

Xia Q, Zhang J, Tian YD et al (2017) Experimental study of thermal effects on a long-span suspension bridge. Am Soc Civ Eng 22(7):4017034. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001083

Xia Q, Cheng YY, Zhang J et al (2016) In-service condition assessment of a long-span suspension bridge using temperature-induced strain data. Am Soc Civ Eng 22(3):4016124. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001003

Luo YZ, Mei YJ, Shen YB et al (2013) Measurement and analysis of steel structure temperature and stress in National Stadium. J Build Struct 34(11):24–32. https://doi.org/10.14006/j.jzjgxb.2013.11.005

Ni YQ, Hua XG, Wong KY et al (2007) Assessment of bridge expansion joints using long-term. Am Soc Civ Eng 21(2):143–151. https://doi.org/10.1061/(asce)0887-3828(2007)21:2(143)

Liang ZB, Zhang J, Cao J et al (2009) Separating temperature effect from state monitoring of concrete bridges. In: Proceedings of SPIE - the international society for optical engineering, vol 7295-72952N. SPIE, Washington, pp 1–9. https://doi.org/10.1117/12.817848

Li SL, Li H, Ou JP et al (2009) Integrity strain response analysis of a long span cable-stayed bridge. Key Eng Mater 413–414:775–783. https://doi.org/10.4028/www.scientific.net/KEM.413-414.775

Hu YD, Hou RR, Xia Q et al (2018) Temperature-induced displacement of supertall structures: a case study. Adv Struct Eng 22(4):982–996. https://doi.org/10.1177/1369433218795288

Lee J, Loh KJ, Choi HS et al (2019) Effect of structural change on temperature behavior of a long-span suspension bridge pylon. Int J Steel Struct 19(6):2073–2089. https://doi.org/10.1007/s13296-019-00279-3

Xia Y, Xu YL, Wei ZL et al (2011) Variation of structural vibration characteristics versus non-uniform temperature distribution. Eng Struct 33(1):146–153. https://doi.org/10.1016/j.engstruct.2010.09.027

Liu J, Liu YJ, Lei J et al (2019) Long-term field test of temperature gradients on the composite girder of a long-span cable-stayed bridge. Adv Struct Eng 22(13):2785–2798. https://doi.org/10.1177/1369433219851300

Reilly J, Glisic B (2018) Identifying time periods of minimal thermal gradient for temperature-driven structural health monitoring. Sensors 18(3):734. https://doi.org/10.3390/s18030734

Xia Y, Chen B, Zhou X et al (2012) Field monitoring and numerical analysis of Tsing Ma suspension bridge temperature behavior. Struct Control Health Monit 20(4):560–575. https://doi.org/10.1002/stc.515

Jang J, Smyth AW (2020) Data-driven models for temperature distribution effects on natural frequencies and thermal prestress modeling. Struct Control Health Monit 27(2):e2489. https://doi.org/10.1002/stc.2489

Sohn H, Dzwonczyk M, Straser EG et al (1999) An experimental study of temperature effect on modal parameters of the Alamosa Canyon Bridge. Earthq Eng Struct Dyn 28(8):879–897. https://doi.org/10.1002/(sici)1096-9845(199908)28:8%3c879::aid-eqe845%3e3.0.co;2-v

Kromanis R, Kripakaran P (2013) Support vector regression for anomaly detection from measurement histories. Adv Eng Inform 27(4):486–495. https://doi.org/10.1016/j.aei.2013.03.002

Kromanis R, Kripakaran P (2014) Predicting thermal response of bridges using regression models derived from measurement histories. Comput Struct 136(2014):64–77. https://doi.org/10.1016/j.compstruc.2014.01.026

Zhou HF, Ni YQ, Ko JM (2011) Eliminating temperature effect in vibration-based structural damage detection. J Eng Mech 137(12):785–796. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000273

Jin C, Jang S, Sun X et al (2016) Damage detection of a highway bridge under severe temperature changes using extended Kalman filter trained neural network. J Civ Struct Health Monit 6(3):545–560. https://doi.org/10.1007/s13349-016-0173-8

Wang ZP, Huang MS, Gu JF (2020) Temperature effects on vibration-based damage detection of a reinforced concrete slab. Appl Sci 10(8):2869. https://doi.org/10.3390/app10082869

Jin SS, Cho S, Jung HJ (2015) Adaptive reference updating for vibration-based structural health monitoring under varying environmental conditions. Comput Struct 158(OCT.):211–224. https://doi.org/10.1016/j.compstruc.2015.06.001

Yan AM, Kerschen G, De Boe P et al (2005) Structural damage diagnosis under changing environmental conditions—part 2: local PCA for nonlinear cases. J Mech Syst and Signal Process 19:865–880. https://doi.org/10.1016/j.ymssp.2004.12.003

Kromanis R (2015) Structural performance evaluation of bridges: characterizing and integrating thermal response. Dissertation, University of Exeter

Kromanis R, Kripakaran P (2016) SHM of bridges: characterising thermal response and detecting anomaly events using a temperature-based measurement interpretation approach. J Civ Struct Health Monit 6(2):237–254. https://doi.org/10.1007/s13349-016-0161-z

William SLW, Chen YT, Roberts GW et al (2017) Separating damage from environmental effects affecting civil structures for near real-time damage detection. Struct Health Monit 17(4):850–868. https://doi.org/10.1177/1475921717722060

Xu MQ, Wang S, Li H (2018) A residual strain energy based damage localisation method for offshore platforms under environmental variations. Ships Offshore Struc 2018:1–8. https://doi.org/10.1080/17445302.2018.1558727

Kundu T, Jin SS, Jung HJ (2014) Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition. Conf Health Monit Struct Biol Syst. https://doi.org/10.1117/12.2046088

Lim HJ, Kim MK, Sohn H et al (2011) Impedance based damage detection under varying temperature and loading conditions. NDT E Int 44(8):740–750. https://doi.org/10.1016/j.ndteint.2011.08.003

Kramer MA (1991) Nonlinear principal component analysis using auto associative neural networks. AIChE J 37(2):233–243. https://doi.org/10.1002/aic.690370209

Ko JM, Sun ZG, Ni YQ (2001) A three-stage scheme for damage detection of Kap Shui Mun cable-stayed bridge. Struct Eng Mech Comput 2001:111–122. https://doi.org/10.1016/B978-008043948-8/50011-4

Ko JM, Sun ZG, Ni YQ (2002) Multi-stage identification scheme for detecting damage in cable-stayed Kap Shui Mun bridge. Eng Struct 24(7):857–868. https://doi.org/10.1016/S0141-0296(02)00024-X

Sohn H, Worden K, Farrar CR (2002) Statistical damage classification under changing environmental and operational conditions. J Intell Mater Syst Struct 13(9):561–574. https://doi.org/10.1106/104538902030904

Hsu TY, Loh CH (2010) Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis. Struct Control Health Monit 17(3):338–354. https://doi.org/10.1002/stc.320

Zhang HY, Gül M, Kostić B (2019) Eliminating temperature effects in damage detection for civil infrastructure using time series analysis and autoassociative neural networks. Am Soc Civ Eng 32(2):4019001. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000987

Ye X, Wu Y, Zhang L et al (2020) Ambient effect filtering using NLPCA-SVR in high-rise buildings. Sensors 20(4):1143. https://doi.org/10.3390/s20041143

Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193

Wu WH, Chen CC, Jhou JW et al (2018) A rapidly convergent empirical mode decomposition method for analyzing the environmental temperature effects on stay cable force. Comput Aided Civ Inf 00(2018):1–19. https://doi.org/10.1111/mice.12355

Zhu Y, Ni YQ, Jesus A et al (2018) Thermal strain extraction methodologies for bridge structural condition assessment. Smart Mater Struct 27(10):105051. https://doi.org/10.1088/1361-665X/aad5fb

Ni YQ, Xia HW, Wong KY et al (2012) In-service condition assessment of bridge deck using long-term monitoring data of strain response. J Bridge Eng 17(6):876–885. https://doi.org/10.1061/(asce)be.1943-5592.0000321

Wu BJ, Li ZX, Chan T, Wang Y (2014) Multiscale features and information extraction of online strain for long-span bridges. Smart Struct Syst 14(4):679–697. https://doi.org/10.12989/sss.2014.14.4.679

Wang H, Zhang YM, Mao JX et al (2019) Modeling and forecasting of temperature-induced strain of a long-span bridge using an improved Bayesian dynamic linear model. Eng Struct 192:220–232. https://doi.org/10.1016/j.engstruct.2019.05.006

Erazo K, Sen D, Nagarajaiah S et al (2019) Vibration-based structural health monitoring under changing environmental conditions using Kalman filtering. Mech Syst Signal Process 117(2019):1–15. https://doi.org/10.1016/j.ymssp.2018.07.041

Zhou S, Song W (2018) Environmental-effects-embedded model updating method considering environmental impacts. Struct Control Health Monit 25(3):e2116. https://doi.org/10.1002/stc.2116

Shokrani Y, Dertimanis VK, Chatzi E et al (2018) On the use of mode shape curvatures for damage localization under varying environmental conditions. Struct Control Health Monit 25(4):e2132. https://doi.org/10.1002/stc.2132

Kostic B, Gul M (2017) Vibration-based damage detection of bridges under varying temperature effects using time-series analysis and artificial neural networks. J Bridge Eng 22(10):04017065. https://doi.org/10.1061/(asce)be.1943-5592.0001085

Surace C, Bovsunovsky A (2020) The use of frequency ratios to diagnose structural damage in varying environmental conditions. Mech Syst Signal Process 136:106523. https://doi.org/10.1016/j.ymssp.2019.106523

Kumar K, Biswas PK, Dhang N (2020) Time series-based SHM using PCA with application to ASCE benchmark structure. J Civ Struct Health Monit. https://doi.org/10.1007/s13349-020-00423-2

Sarmadi H, Karamodin A (2020) A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects. Mech Syst Signal Process 140(6):106495. https://doi.org/10.1016/j.ymssp.2019.1064950888-3270

Kulprapha N, Warnitchai P (2012) Structural health monitoring of continuous prestressed concrete bridges using ambient thermal responses. Eng Struct 40:20–38. https://doi.org/10.1016/j.engstruct.2012.02.001

Jesus A, Brommer P, Zhu Y et al (2017) Comprehensive Bayesian structural identification using temperature variation. Eng Struct 141:75–82. https://doi.org/10.1016/j.engstruct.2017.01.060

Jesus A, Brommer P, Westgate R et al (2019) Bayesian structural identification of a long suspension bridge considering temperature and traffic load effects. Struct Health Monit 18(4):1310–1323. https://doi.org/10.1177/1475921718794299

Zhu YJ, Ni YQ, Jin H et al (2019) A temperature-driven MPCA method for structural anomaly detection. Eng Struct 190:447–458. https://doi.org/10.1016/j.engstruct.2019.04.004