Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site
Tóm tắt
The structural origin and evolution of bioluminescent activity of beetle luciferases from AMP/CoA ligases remains a mystery. Previously we cloned the luciferase-like enzyme from Zophobas morio mealworm, a reasonable protoluciferase model that could shine light on this mystery. Kinetic characterization and studies with D- and L-luciferin and their adenylates showed that stereoselectivity constitutes a critical feature for the origin of luciferase activity in AMP/CoA ligases. Comparison of the primary structures and modeling studies of this protoluciferase and the three main families of beetle luciferases showed that the carboxylic acid substrate binding site of this enzyme is smaller and more hydrophobic than the luciferin binding site of beetle luciferases, showing several substitutions of otherwise conserved residues. Thus, here we performed a site-directed mutagenesis survey of the carboxylic binding site motifs of the protoluciferase by replacing their residues by the respective conserved ones found in beetle luciferases in order to identify the structural determinants of luciferase/oxygenase activity. Although most of the substitutions had negative impact on the luminescence activity of the protoluciferase, only the substitution I327T improved the luminescence activity, resulting in a broad and 15 nm blue-shifted luminescence spectrum. Such substitution indicates the importance of the loop motif 322YGMSEI327 (341YGLTETT347 in Photinus pyralis luciferase) for luciferase activity, and indicates a possible route for the evolution of bioluminescence function of beetle luciferases.
Tài liệu tham khảo
K. V. Wood, The chemical mechanism and evolutionary development of beetle bioluminescence, Photochem. Photobiol., 1995, 62, 662–673.
V. R. Viviani, The Origin, Diversity and Structure Function Relationships of Insects Luciferases, Cell. Mol. Life Sci., 2002, 59, 1833–1850.
M. Knights and C. J. Drogemuller, Xenobiotic-CoA ligases: kinetic and molecular characterization, Curr. Drug Metab., 2000, 1, 49–66.
M. Nakamura, S. Maki, Y. Amano, Y. Ohkita, K. Niwa, T. Hirano, Y. Ohmiya and H. Niwa, Firefly luciferase exhibits bimodal action depending on the luciferin chirality, Biochem. Biophys. Res. Commun., 2005, 331, 471–475.
Y. Oba, M. Sato, M. Ojika and S. Inouye, Enzymatic and Genetic Characterization of firefly luciferase and Drosophila CG6178 as a fatty acyl_CoA synthetase, Biosci., Biotechnol., Biochem., 2005, 69, 819–828.
V. R. Viviani, Beetle luciferases: origin, structure and fuction relationships, and engineering for biotechnological applications, in Luciferases and fluorescent proteins: principles and advances in biotechnology and bioimaging, ed. V. R. Viviani & Y. Ohmiya, Research Signpost, Kerala, India, 2007, pp. 79–105.
B. R. Branchini, R. A. Magyar, M. H. Murtishaw, S. M. Anderson and M. Zimmer, Site-directed mutagenesis of histidine 245 in firefly luciferase: a proposed model of the active-site, Biochemistry, 1998, 37, 15311–15319.
V. R. Viviani, A. Uchida, W. Viviani and Y. Ohmiya, The influence of Ala243(Gly247), Arg 215 and Thr226(Asn230) on the bioluminescence spectra and pH-sensitivity of railroad worm, click beetle and firefly luciferases, Photochem. Photobiol., 2002, 76, 538–544.
N. N. Ugarova, L. G. Maloshenok, I. V. Uporow and M. I. Kosharov, Bioluminescence spectra of native and mutant firefly luciferases as a function of pH., Biochemistry, 2005, 70, 1262–1267.
V. R. Viviani and Y. Ohmiya, Bioluminescence color determinants of Phrixothrix railroadworm luciferases: chimeric luciferases, site-directed mutagenesis of Arg215 and guanidine effect, Photochem. Photobiol., 2000, 72, 267–271.
B. R. Branchini, T. L. Southworth, M. H. Murtishaw, H. Bojie and S. E. Fleet, A mutagenesis study of the putative luciferin binding site residues of firefly luciferase, Biochemistry, 2003, 42, 10429–10436.
B. R. Branchini, R. A. Magyar, M. H. Murtishaw and N. C. Portier, The role of active site residue arginine 218 in firefly bioluminescence, Biochemistry, 2001, 40, 2410–2418.
V. R. Viviani, F. G. C. Arnoldi, A. J. Silva-Neto, T. L. Oehlmeyer, E. J. H. Bechara and Y. Ohmiya, The structural origin and biological function of pH-sensitivity in firefly luciferases, Photochem. Photobiol. Sci., 2008, 7, 159–169.
H. Caysa, R. Jacob, N. Muther, B. Branchini, M. Messerle and A. Soling, A red-shifted codon-optimized firefly luciferase is a sensitive reporter for bioluminescence imaging, Photochem. Photobiol. Sci., 2009, 8, 52–56.
A. Moradi, S. Hosseinkhani, H. Naderi-Manesh, M. Sadeghizadeh and B. S. Alipour, Effect of charge distribution in a flexible loop on the bioluminescence color of firefly luciferases, Biochemistry, 2009, 48, 575–582.
M. Imani, S. Hosseinkhani, S. Ahmadian and M. Nazari, Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH-sensitivity, Photochem. Photobiol. Sci., 2010, 9, 1167–1177.
E. Conti, N. P. Franks and P. Brick, Crystal Structure of Firefly Luciferase Throws Light on a Super Family of Adenylate-forming Enzymes, Structure, 1996, 4, 287–298.
T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata and H. Kato, Structural basis for the spectral difference in luciferase bioluminescence, Nature, 2006, 440, 372–376.
D. S. Auld, S. Lovell, N. Thorne, W. A. Lea, D. J. Maloney, M. Shen, G. Rai, K. P. Battaile, C. J. Thomas, A. Simeonov, R. P. Hanzlik and J. Inglese, Molecular basis for the high-affinity binding and stabilization of firefly luciferase by PTC124, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4878–4883.
V. R. Viviani and J. H. Bechara, Larval Tenebrio molitor (Coleoptera: Tenebrionidae) fat body extracts catalyze D-luciferin and ATP-dependent chemiluminescence. A luciferase-like enzyme, Photochem. Photobiol., 1996, 63, 713–718.
Y. Oba, M. Sato and S. Inouye, Cloning and characterization of the homologous genes of firefly luciferase in the mealworm beetle Tenebrio molitor, Insect Mol. Biol., 2006, 15, 293–299.
V. R. Viviani, R. A. Prado, F. C. G. Arnoldi and F. C. Abdalla, An ancestral luciferase in the Malpighian tubules of a non-bioluminescent beetle, Photochem. Photobiol. Sci., 2009, 8, 57–61.
V. R. Viviani, V. Scorsato, R. A. Prado, J. G. Pereira, K. Niwa, Y. Ohmiya and J. A. Barbosa, The origin of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase): luciferin stereoselectivity as a switch for the oxygenase activity, Photochem. Photobiol. Sci., 2010, 9, 1111–1119.
A. Sali and T. L. Blundell, Comparative protein modeling by satisfaction of spatial restraints, J. Mol. Biol., 1993, 234, 779–815.
W. L. DeLano, The Pymol Molecular Graphics System, 2002, available at: http://www.pymol.org.
V. R. Viviani and Y. Ohmiya, Bovine serum albumin displays luciferaselike activity in presence of luciferyl-adenylate: insights on the origin of protoluciferase activity and bioluminescence colours, Luminescence, 2006, 21, 262–267.
V. R. Viviani, F. G. C. Arnoldi, B. Venkatesh, A. J. Silva Neto, F. G. T. Ogawa, T. L. Oehlmeyer and Y. Ohmiya, Active-site properties of Phrixotrix railroad worm green and red bioluminescence-eliciting luciferases, J. Biochemistry (Japan), 2006, 140, 467–474.
Y. Ohba, K. Lida and S. Inouye, Functional conversion of fatty acyl-CoA synthetase to firefly luciferase by site-directed mutagenesis: a key substitution responsible for luminescence activity, FEBS Lett., 2009, 583, 2004–2008.
N. Kajiyama and E. Nakano, Isolation and characterization of mutants of firefly luciferase which produce different colors of light, Protein Eng., Des. Sel., 1991, 4, 691–693.