Structural equation modelling of mercury intra-skeletal variability on archaeological human remains

Science of The Total Environment - Tập 851 - Trang 158015 - 2022
Noemi Álvarez-Fernández1,2, Antonio Martínez Cortizas1,3, Olalla López-Costas4,5,6
1CRETUS, EcoPast (GI-1553), Facultade de Bioloxía, Universidade de Santiago de Compostela, 16782, Spain
2Boscalia Technologies S.L., Spain
3Bolin Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden
4EcoPast (GI-1553), CRETUS, Area of Archaeology, Department of History, Universidade de Santiago de Compostela, 15782, Spain
5Archaeological Research Laboratory, Stockholm University, Wallenberglaboratoriet, SE-10691, Sweden
6Laboratorio de Antropología Física, Facultad de Medicina, Universidad de Granada, 18012, Spain

Tài liệu tham khảo

Abass, 2018, Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans, Environ. Int., 114, 1, 10.1016/j.envint.2018.02.028 Akkus, 2003, Aging of microstructural compartments in human compact bone, J. Bone Miner. Res., 18, 1012, 10.1359/jbmr.2003.18.6.1012 Alexandrovskaya, 2005, Radiocarbon data and anthropochemistry of ancient Moscow, Geochronometria, 24, 87 Álvarez Fernández, 2020 Álvarez-Fernández, 2020, Atmospheric mercury pollution deciphered through archaeological bones, J. Archaeol. Sci., 119, 10.1016/j.jas.2020.105159 Álvarez-Fernández, 2021, Approaching mercury distribution in burial environment using PLS-R modelling, Sci. Rep., 11, 21231, 10.1038/s41598-021-00768-8 Amuno, 2013, Potential ecological risk of heavy metal distribution in cemetery soils, Water Air Soil Pollut., 224, 1435, 10.1007/s11270-013-1435-2 Augat, 2006, The role of cortical bone and its microstructure in bone strength, Age Ageing, 35, ii27, 10.1093/ageing/afl081 Ávila, 2014, Cinnabar in mesoamerica: poisoning or mortuary ritual?, J. Archaeol. Sci., 49, 48, 10.1016/j.jas.2014.04.024 Babuśka-Roczniak, 2021, Occurrence of mercury in the knee joint tissues, Pol. Ann. Med., 28, 39 Bala, 2013, Bone mineralization: from tissue to crystal in normal and pathological contexts, Osteoporos. Int., 24, 2153, 10.1007/s00198-012-2228-y Baxter, 1966, The physical state of bone carbonate. A comparative infra-red study in several mineralized tissues, Yale J. Biol. Med., 38, 456 Becker, 2013 Berlin, 2015, Chapter 46 - mercury, 1013 Bjørklund, 2017, The toxicology of mercury: current research and emerging trends, Environ. Res., 159, 545, 10.1016/j.envres.2017.08.051 Bocca, 2018, Metals in bones of the middle-aged inhabitants of Sardinia island (Italy) to assess nutrition and environmental exposure, Environ. Sci. Pollut. Res., 25, 8404, 10.1007/s11356-017-1140-6 Boivin, 2007, The hydroxyapatite crystal: a closer look, 126 Boivin, 2002, The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography, Calcif. Tissue Int., 70, 503, 10.1007/s00223-001-2048-0 Brickley, 2004, Compiling a skeletal inventory: disarticulated and co-mingled remains, 23 Budnik, 2019, Mercury pollution in modern times and its socio-medical consequences, Sci. Total Environ., 654, 720, 10.1016/j.scitotenv.2018.10.408 Buikstra, 1994 Cervini-Silva, 2013, Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains, Geomicrobiol J., 30, 566, 10.1080/01490451.2012.737090 Cervini-Silva, 2021, Natural incorporation of mercury in bone, 67 Clarkson, 1997, The toxicology of mercury, Crit. Rev. Clin. Lab. Sci., 34, 369, 10.3109/10408369708998098 Coates, 2000, Encyclopedia of analytical chemistry, 10815 Cooke, 2020, Environmental archives of atmospheric hg deposition – a review, Sci. Total Environ., 709, 10.1016/j.scitotenv.2019.134800 Currey, 2008, Collagen and the mechanical properties of bone and calcified cartilage, 397 Dal Sasso, 2016, Bone diagenesis variability among multiple burial phases at Al khiday (Sudan) investigated by ATR-FTIR spectroscopy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 463, 168, 10.1016/j.palaeo.2016.10.005 Danielsen, 1994, Thermal stability of cortical bone collagen in relation to age in normal individuals and in individuals with osteopetrosis, Bone, 15, 91, 10.1016/8756-3282(94)90897-4 De Mendonça, 2000, Estimation of height from the length of long bones in a Portuguese adult population, Am. J. Phys. Anthropol., 112, 39, 10.1002/(SICI)1096-8644(200005)112:1<39::AID-AJPA5>3.0.CO;2-# Domingo, 2017, Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator, Environ. Res., 154, 269, 10.1016/j.envres.2017.01.014 Emslie, 2015, Chronic mercury exposure in late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar, Sci. Rep., 5, 14679, 10.1038/srep14679 Emslie, 2019, Mercury in archaeological human bone: biogenic or diagenetic?, J. Archaeol. Sci., 108, 10.1016/j.jas.2019.05.005 Evers, 2018, The effects of methylmercury on wildlife: a comprehensive review and approach for interpretation, 181 Farlay, 2010, Mineral maturity and crystallinity index are distinct characteristics of bone mineral, J. Bone Miner. Metab., 28, 433, 10.1007/s00774-009-0146-7 Fleet, 2009, Infrared spectra of carbonate apatites: ν2-region bands, Biomaterials, 30, 1473, 10.1016/j.biomaterials.2008.12.007 Gabriel, 2004, Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment, Environ. Geochem. Health, 26, 421, 10.1007/s10653-004-1308-0 García, 2001, Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain, J. Environ. Sci. Health A, 36, 1767, 10.1081/ESE-100106258 García-López, 2022, Understanding necrosol pedogenetical processes in post-Roman burials developed on dunes sands, Sci. Rep., 12, 10619, 10.1038/s41598-022-14750-5 Gauza-Włodarczyk, 2017, Amino acid composition in determination of collagen origin and assessment of physical factors effects, Int. J. Biol. Macromol., 104, 987, 10.1016/j.ijbiomac.2017.07.013 Gębka, 2020, Mobility of mercury in soil and its transport into the sea, Environ. Sci. Pollut. Res., 27, 8492, 10.1007/s11356-019-06790-8 Goormaghtigh, 2006, Evaluation of the information content in infrared spectra for protein secondary structure determination, Biophys. J., 90, 2946, 10.1529/biophysj.105.072017 Graf, 1986, Flora und Vegetation der Friedhöfe in Berlin (West), 1 Grunenwald, 2014, Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology, J. Archaeol. Sci., 49, 134, 10.1016/j.jas.2014.05.004 Gustin, 2020, Mercury biogeochemical cycling: a synthesis of recent scientific advances, Sci. Total Environ., 737, 10.1016/j.scitotenv.2020.139619 Ha, 2017, Current progress on understanding the impact of mercury on human health, Environ. Res., 152, 419, 10.1016/j.envres.2016.06.042 Hair, 2017 Hair, 2019, When to use and how to report the results of PLS-SEM, Eur. Bus. Rev., 31, 2, 10.1108/EBR-11-2018-0203 Hair, 2019, Rethinking some of the rethinking of partial least squares, Eur. J. Mark., 53, 566, 10.1108/EJM-10-2018-0665 Hedges, 2002, Bone diagenesis: an overview of processes, Archaeometry, 44, 319, 10.1111/1475-4754.00064 Hedges, 2007, Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements, Am. J. Phys. Anthropol., 133, 808, 10.1002/ajpa.20598 Holmes, 2009, Is low-level environmental mercury exposure of concern to human health?, Sci. Total Environ., 408, 171, 10.1016/j.scitotenv.2009.09.043 Hulmes, 2008, Collagen diversity, synthesis and assembly, 15 Jalili, 2020, Exposure to heavy metals and the risk of osteopenia or osteoporosis: a systematic review and meta-analysis, Osteoporos. Int., 31, 1671, 10.1007/s00198-020-05429-6 Janaway, 2009, Decomposition of human remains, 313 Johansen, 2007, Human accumulation of mercury in Greenland, Sci. Total Environ., 377, 173, 10.1016/j.scitotenv.2007.02.004 Jonker, 2012, Mineral contamination from cemetery soils: case study of zandfontein cemetery, South Africa, Int. J. Environ. Res. Public Health, 9, 511, 10.3390/ijerph9020511 Kepa, 2012, Analysis of mercury levels in historical bone material from syphilitic subjects–pilot studies (short report), Anthropol. Anz., 69, 367, 10.1127/0003-5548/2012/0163 Lanocha, 2013, The effect of environmental factors on concentration of trace elements in hip joint bones of patients after hip replacement surgery, Ann. Agric. Environ. Med., 20, 487 Punta A Lanzada , O Grove (Galicia, Spain) 42o25’44.61”N 8o52’29.31”W elev 16 m eye alt 585m. Google Earth. July 18, 2020. March 20, 2021. https://bit.ly/3FwpZrE, n.d. Larkin, 2017 Leblanc, 2000, 4,500-year-old mining pollution in southwestern Spain: long-term implications for modern mining pollution, Econ. Geol., 95, 655 Lech, 2004, Total mercury levels in human autopsy materials from a nonexposed polish population, Arch.Environ.Health, 59, 50, 10.3200/AEOH.59.1.50-54 Li, 2022, Looping mercury cycle in global environmental-economic system modeling, Environ. Sci. Technol., 56, 2861, 10.1021/acs.est.1c03936 Liu, 2011, Overview of mercury in the environment, 1 López Costas, 2012 López Costas, 2017, Informe final: Estudio de esqueletos humanos y de secuencias edafo-sedimentárias del yacimiento de A Lanzada, 2017 López-Costas, 2015, Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of a lanzada, NW Spain, Estudos do Quaternário / Quaternary Studies, 55–67 López-Costas, 2012, Postnatal ontogenesis of the tibia. Implications for age and sex estimation, Forensic Sci. Int., 214, 207.e1, 10.1016/j.forsciint.2011.07.038 López-Costas, 2016, Chemical compositional changes in archaeological human bones due to diagenesis: type of bone vs soil environment, J. Archaeol. Sci., 67, 43, 10.1016/j.jas.2016.02.001 López-Costas, 2020, Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman world, Sci. Total Environ., 710, 10.1016/j.scitotenv.2019.136319 Martínez Cortizas, 2020, Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach, Sci. Rep., 10, 17888, 10.1038/s41598-020-74993-y Martı́nez-Cortizas, 1999, Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition, Science, 284, 939, 10.1126/science.284.5416.939 McKeown, 2005, Raman spectroscopy and vibrational analyses of albite: from 25 °C through the melting temperature, Am. Mineral., 90, 1506, 10.2138/am.2005.1726 Mohammed, 2020, Use of the geophysical approaches for studying the environmental impact assessment of the human burying techniques to the soil and groundwater: a case study of geheina cemeteries, SohagEgypt, Journal of African Earth Sciences, 172, 10.1016/j.jafrearsci.2020.104010 Morel, 1998, The chemical cycle and bioaccumulation of mercury, Annu. Rev. Ecol. Syst., 29, 543, 10.1146/annurev.ecolsys.29.1.543 Nielsen-Marsh, 2000, Patterns of diagenesis in bone I: the effects of site environments, J. Archaeol. Sci., 27, 1139, 10.1006/jasc.1999.0537 Ochoa-Lugo, 2017, The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological hg-enriched bone remains, J. Archaeol. Sci. Rep., 15, 213 Outridge, 2018, Updated global and oceanic mercury budgets for the United Nations global mercury assessment 2018, Environ. Sci. Technol., 52, 11466 Panova, 2018, Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR, Phys. Part. Nuclei Lett., 15, 127, 10.1134/S1547477118010132 Paschalis, 1997, FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone, Calcif. Tissue Int., 61, 487, 10.1007/s002239900372 Pérez-Rodríguez, 2016, Modelling mercury accumulation in minerogenic peat combining FTIR-ATR spectroscopy and partial least squares (PLS), Spectrochim. Acta A Mol. Biomol. Spectrosc., 168, 65, 10.1016/j.saa.2016.05.052 Prestes da Silva, 2020, Concentration of heavy metals in soils under cemetery occupation in Amazonas, Brazil, Soil Sediment Contam. Int. J., 29, 192, 10.1080/15320383.2019.1696280 Pushie, 2014, Elemental and chemically specific X-ray fluorescence imaging of biological systems, Chem. Rev., 114, 8499, 10.1021/cr4007297 Qin, 2014, Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River, J. Geochem. Explor., 138, 33, 10.1016/j.gexplo.2013.12.005 Rasmussen, 2008, Mercury levels in danish medieval human bones, J. Archaeol. Sci., 35, 2295, 10.1016/j.jas.2008.03.003 Rasmussen, 2013, The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark – the chemical life history hypothesis, Herit. Sci., 1, 10, 10.1186/2050-7445-1-10 Rasmussen, 2013, Mercury in soil surrounding medieval human skeletons, Herit. Sci., 1, 16, 10.1186/2050-7445-1-16 Rasmussen, 2017, On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals, 162, 90 Rey, 1991, Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in thev3 PO4 domain, Calcif. Tissue Int., 49, 383, 10.1007/BF02555847 Rey, 2011, 1.111 - bioactive ceramics: physical chemistry, 187 Ringle, 2015, SmartPLS, SmartPLS, 3 Rissech, 2013, Humeral development from neonatal period to skeletal maturity–application in age and sex assessment, Int. J. Legal Med., 127, 201, 10.1007/s00414-012-0713-7 Rodríguez Martínez, 2017, Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra) Sarstedt, 2017, Partial least squares structural equation modeling, 1 Schuster, 1991, The behavior of mercury in the soil with special emphasis on complexation and adsorption processes - a review of the literature, Water Air Soil Pollut., 56, 667, 10.1007/BF00342308 Silva-Filho, 2021, Impact of environmental mercury exposure on the blood cells oxidative status of fishermen living around Mundaú lagoon in Maceió – Alagoas (AL)Brazil, Ecotoxicology and Environmental Safety, 219, 10.1016/j.ecoenv.2021.112337 Simonescu, 2012, Application of FTIR spectroscopy in environmental studies Skyllberg, 2003, Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment, Biogeochemistry, 64, 53, 10.1023/A:1024904502633 Sobocká, 2004, Necrosol as a new antrhopogenic soil type, 107 Socrates, 2004 Spongberg, 2000, Inorganic soil contamination from cemetery leachate, Water Air Soil Pollut., 117, 313, 10.1023/A:1005186919370 Streets, 2011, All-time releases of mercury to the atmosphere from human activities, Environ. Sci. Technol., 45, 10485, 10.1021/es202765m Suzuki, 2004, Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism, J. Bone Miner. Metab., 22, 439, 10.1007/s00774-004-0505-3 Tang, 2020, Understanding mercury methylation in the changing environment: recent advances in assessing microbial methylators and mercury bioavailability, Sci. Total Environ., 714, 10.1016/j.scitotenv.2020.136827 Tang, 2022, Normal concentration range of blood mercury and bone mineral density: a cross-sectional study of National Health and nutrition examination survey (NHANES) 2005–2010, Environ. Sci. Pollut. Res., 29, 7743, 10.1007/s11356-021-16162-w Tchounwou, 2003, Review: environmental exposure to mercury and its toxicopathologic implications for public health, Environ. Toxicol., 18, 149, 10.1002/tox.10116 Team, 2021 Trueman, 2004, Mineralogical and compositional changes in bones exposed on soil surfaces in amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids, J. Archaeol. Sci., 31, 721, 10.1016/j.jas.2003.11.003 Trueman, 2004, Mineralogical and compositional changes in bones exposed on soil surfaces in amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids, J. Archaeol. Sci., 31, 721, 10.1016/j.jas.2003.11.003 Uslu, 2009, Ecological concerns over cemeteries, AJAR, 4, 1505 Vaculíková, 2011, Characterization and differentiation of kaolinites from selected czech deposits using infrared spectroscopy and differential thermal analysis, Acta Geodyn. Geomater., 8, 59 Walser, 2019, Volcanoes, medicine, and monasticism: investigating mercury exposure in medieval Iceland, Int. J. Osteoarchaeol., 29, 48, 10.1002/oa.2712 Wang, 2002, Age-related changes in the collagen network and toughness of bone, Bone, 31, 1, 10.1016/S8756-3282(01)00697-4 Weiner, 1990, States of preservation of bones from prehistoric sites in the near east: a survey, J. Archaeol. Sci., 17, 187, 10.1016/0305-4403(90)90058-D WHO, 1998 Who, 2020, 10 Yamada, 1995, Accumulation of mercury in excavated bones of two natives in Japan, Sci. Total Environ., 162, 253, 10.1016/0048-9697(95)04435-4 Yap, 2011, Comparisons of various types of normality tests, J. Stat. Comput. Simul., 81, 2141, 10.1080/00949655.2010.520163 Yoo, 2002, Interrelationship between the concentration of toxic and essential elements in korean tissues, J. Health Sci., 48, 195, 10.1248/jhs.48.195 Zammel, 2021, Evaluation of lumbar vertebrae mineral composition in rat model of severe osteopenia: a fourier transform infrared spectroscopy (FTIR) analysis, Vib. Spectrosc., 115, 10.1016/j.vibspec.2021.103279 Zioła-Frankowska, 2017, An analysis of factors affecting the mercury content in the human femoral bone, Environ. Sci. Pollut. Res. Int., 24, 547, 10.1007/s11356-016-7784-9