Structural equation modelling of mercury intra-skeletal variability on archaeological human remains
Tài liệu tham khảo
Abass, 2018, Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans, Environ. Int., 114, 1, 10.1016/j.envint.2018.02.028
Akkus, 2003, Aging of microstructural compartments in human compact bone, J. Bone Miner. Res., 18, 1012, 10.1359/jbmr.2003.18.6.1012
Alexandrovskaya, 2005, Radiocarbon data and anthropochemistry of ancient Moscow, Geochronometria, 24, 87
Álvarez Fernández, 2020
Álvarez-Fernández, 2020, Atmospheric mercury pollution deciphered through archaeological bones, J. Archaeol. Sci., 119, 10.1016/j.jas.2020.105159
Álvarez-Fernández, 2021, Approaching mercury distribution in burial environment using PLS-R modelling, Sci. Rep., 11, 21231, 10.1038/s41598-021-00768-8
Amuno, 2013, Potential ecological risk of heavy metal distribution in cemetery soils, Water Air Soil Pollut., 224, 1435, 10.1007/s11270-013-1435-2
Augat, 2006, The role of cortical bone and its microstructure in bone strength, Age Ageing, 35, ii27, 10.1093/ageing/afl081
Ávila, 2014, Cinnabar in mesoamerica: poisoning or mortuary ritual?, J. Archaeol. Sci., 49, 48, 10.1016/j.jas.2014.04.024
Babuśka-Roczniak, 2021, Occurrence of mercury in the knee joint tissues, Pol. Ann. Med., 28, 39
Bala, 2013, Bone mineralization: from tissue to crystal in normal and pathological contexts, Osteoporos. Int., 24, 2153, 10.1007/s00198-012-2228-y
Baxter, 1966, The physical state of bone carbonate. A comparative infra-red study in several mineralized tissues, Yale J. Biol. Med., 38, 456
Becker, 2013
Berlin, 2015, Chapter 46 - mercury, 1013
Bjørklund, 2017, The toxicology of mercury: current research and emerging trends, Environ. Res., 159, 545, 10.1016/j.envres.2017.08.051
Bocca, 2018, Metals in bones of the middle-aged inhabitants of Sardinia island (Italy) to assess nutrition and environmental exposure, Environ. Sci. Pollut. Res., 25, 8404, 10.1007/s11356-017-1140-6
Boivin, 2007, The hydroxyapatite crystal: a closer look, 126
Boivin, 2002, The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography, Calcif. Tissue Int., 70, 503, 10.1007/s00223-001-2048-0
Brickley, 2004, Compiling a skeletal inventory: disarticulated and co-mingled remains, 23
Budnik, 2019, Mercury pollution in modern times and its socio-medical consequences, Sci. Total Environ., 654, 720, 10.1016/j.scitotenv.2018.10.408
Buikstra, 1994
Cervini-Silva, 2013, Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains, Geomicrobiol J., 30, 566, 10.1080/01490451.2012.737090
Cervini-Silva, 2021, Natural incorporation of mercury in bone, 67
Clarkson, 1997, The toxicology of mercury, Crit. Rev. Clin. Lab. Sci., 34, 369, 10.3109/10408369708998098
Coates, 2000, Encyclopedia of analytical chemistry, 10815
Cooke, 2020, Environmental archives of atmospheric hg deposition – a review, Sci. Total Environ., 709, 10.1016/j.scitotenv.2019.134800
Currey, 2008, Collagen and the mechanical properties of bone and calcified cartilage, 397
Dal Sasso, 2016, Bone diagenesis variability among multiple burial phases at Al khiday (Sudan) investigated by ATR-FTIR spectroscopy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 463, 168, 10.1016/j.palaeo.2016.10.005
Danielsen, 1994, Thermal stability of cortical bone collagen in relation to age in normal individuals and in individuals with osteopetrosis, Bone, 15, 91, 10.1016/8756-3282(94)90897-4
De Mendonça, 2000, Estimation of height from the length of long bones in a Portuguese adult population, Am. J. Phys. Anthropol., 112, 39, 10.1002/(SICI)1096-8644(200005)112:1<39::AID-AJPA5>3.0.CO;2-#
Domingo, 2017, Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator, Environ. Res., 154, 269, 10.1016/j.envres.2017.01.014
Emslie, 2015, Chronic mercury exposure in late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar, Sci. Rep., 5, 14679, 10.1038/srep14679
Emslie, 2019, Mercury in archaeological human bone: biogenic or diagenetic?, J. Archaeol. Sci., 108, 10.1016/j.jas.2019.05.005
Evers, 2018, The effects of methylmercury on wildlife: a comprehensive review and approach for interpretation, 181
Farlay, 2010, Mineral maturity and crystallinity index are distinct characteristics of bone mineral, J. Bone Miner. Metab., 28, 433, 10.1007/s00774-009-0146-7
Fleet, 2009, Infrared spectra of carbonate apatites: ν2-region bands, Biomaterials, 30, 1473, 10.1016/j.biomaterials.2008.12.007
Gabriel, 2004, Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment, Environ. Geochem. Health, 26, 421, 10.1007/s10653-004-1308-0
García, 2001, Accumulation of metals in autopsy tissues of subjects living in Tarragona County, Spain, J. Environ. Sci. Health A, 36, 1767, 10.1081/ESE-100106258
García-López, 2022, Understanding necrosol pedogenetical processes in post-Roman burials developed on dunes sands, Sci. Rep., 12, 10619, 10.1038/s41598-022-14750-5
Gauza-Włodarczyk, 2017, Amino acid composition in determination of collagen origin and assessment of physical factors effects, Int. J. Biol. Macromol., 104, 987, 10.1016/j.ijbiomac.2017.07.013
Gębka, 2020, Mobility of mercury in soil and its transport into the sea, Environ. Sci. Pollut. Res., 27, 8492, 10.1007/s11356-019-06790-8
Goormaghtigh, 2006, Evaluation of the information content in infrared spectra for protein secondary structure determination, Biophys. J., 90, 2946, 10.1529/biophysj.105.072017
Graf, 1986, Flora und Vegetation der Friedhöfe in Berlin (West), 1
Grunenwald, 2014, Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology, J. Archaeol. Sci., 49, 134, 10.1016/j.jas.2014.05.004
Gustin, 2020, Mercury biogeochemical cycling: a synthesis of recent scientific advances, Sci. Total Environ., 737, 10.1016/j.scitotenv.2020.139619
Ha, 2017, Current progress on understanding the impact of mercury on human health, Environ. Res., 152, 419, 10.1016/j.envres.2016.06.042
Hair, 2017
Hair, 2019, When to use and how to report the results of PLS-SEM, Eur. Bus. Rev., 31, 2, 10.1108/EBR-11-2018-0203
Hair, 2019, Rethinking some of the rethinking of partial least squares, Eur. J. Mark., 53, 566, 10.1108/EJM-10-2018-0665
Hedges, 2002, Bone diagenesis: an overview of processes, Archaeometry, 44, 319, 10.1111/1475-4754.00064
Hedges, 2007, Collagen turnover in the adult femoral mid-shaft: modeled from anthropogenic radiocarbon tracer measurements, Am. J. Phys. Anthropol., 133, 808, 10.1002/ajpa.20598
Holmes, 2009, Is low-level environmental mercury exposure of concern to human health?, Sci. Total Environ., 408, 171, 10.1016/j.scitotenv.2009.09.043
Hulmes, 2008, Collagen diversity, synthesis and assembly, 15
Jalili, 2020, Exposure to heavy metals and the risk of osteopenia or osteoporosis: a systematic review and meta-analysis, Osteoporos. Int., 31, 1671, 10.1007/s00198-020-05429-6
Janaway, 2009, Decomposition of human remains, 313
Johansen, 2007, Human accumulation of mercury in Greenland, Sci. Total Environ., 377, 173, 10.1016/j.scitotenv.2007.02.004
Jonker, 2012, Mineral contamination from cemetery soils: case study of zandfontein cemetery, South Africa, Int. J. Environ. Res. Public Health, 9, 511, 10.3390/ijerph9020511
Kepa, 2012, Analysis of mercury levels in historical bone material from syphilitic subjects–pilot studies (short report), Anthropol. Anz., 69, 367, 10.1127/0003-5548/2012/0163
Lanocha, 2013, The effect of environmental factors on concentration of trace elements in hip joint bones of patients after hip replacement surgery, Ann. Agric. Environ. Med., 20, 487
Punta A Lanzada , O Grove (Galicia, Spain) 42o25’44.61”N 8o52’29.31”W elev 16 m eye alt 585m. Google Earth. July 18, 2020. March 20, 2021. https://bit.ly/3FwpZrE, n.d.
Larkin, 2017
Leblanc, 2000, 4,500-year-old mining pollution in southwestern Spain: long-term implications for modern mining pollution, Econ. Geol., 95, 655
Lech, 2004, Total mercury levels in human autopsy materials from a nonexposed polish population, Arch.Environ.Health, 59, 50, 10.3200/AEOH.59.1.50-54
Li, 2022, Looping mercury cycle in global environmental-economic system modeling, Environ. Sci. Technol., 56, 2861, 10.1021/acs.est.1c03936
Liu, 2011, Overview of mercury in the environment, 1
López Costas, 2012
López Costas, 2017, Informe final: Estudio de esqueletos humanos y de secuencias edafo-sedimentárias del yacimiento de A Lanzada, 2017
López-Costas, 2015, Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of a lanzada, NW Spain, Estudos do Quaternário / Quaternary Studies, 55–67
López-Costas, 2012, Postnatal ontogenesis of the tibia. Implications for age and sex estimation, Forensic Sci. Int., 214, 207.e1, 10.1016/j.forsciint.2011.07.038
López-Costas, 2016, Chemical compositional changes in archaeological human bones due to diagenesis: type of bone vs soil environment, J. Archaeol. Sci., 67, 43, 10.1016/j.jas.2016.02.001
López-Costas, 2020, Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman world, Sci. Total Environ., 710, 10.1016/j.scitotenv.2019.136319
Martínez Cortizas, 2020, Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach, Sci. Rep., 10, 17888, 10.1038/s41598-020-74993-y
Martı́nez-Cortizas, 1999, Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition, Science, 284, 939, 10.1126/science.284.5416.939
McKeown, 2005, Raman spectroscopy and vibrational analyses of albite: from 25 °C through the melting temperature, Am. Mineral., 90, 1506, 10.2138/am.2005.1726
Mohammed, 2020, Use of the geophysical approaches for studying the environmental impact assessment of the human burying techniques to the soil and groundwater: a case study of geheina cemeteries, SohagEgypt, Journal of African Earth Sciences, 172, 10.1016/j.jafrearsci.2020.104010
Morel, 1998, The chemical cycle and bioaccumulation of mercury, Annu. Rev. Ecol. Syst., 29, 543, 10.1146/annurev.ecolsys.29.1.543
Nielsen-Marsh, 2000, Patterns of diagenesis in bone I: the effects of site environments, J. Archaeol. Sci., 27, 1139, 10.1006/jasc.1999.0537
Ochoa-Lugo, 2017, The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological hg-enriched bone remains, J. Archaeol. Sci. Rep., 15, 213
Outridge, 2018, Updated global and oceanic mercury budgets for the United Nations global mercury assessment 2018, Environ. Sci. Technol., 52, 11466
Panova, 2018, Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR, Phys. Part. Nuclei Lett., 15, 127, 10.1134/S1547477118010132
Paschalis, 1997, FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone, Calcif. Tissue Int., 61, 487, 10.1007/s002239900372
Pérez-Rodríguez, 2016, Modelling mercury accumulation in minerogenic peat combining FTIR-ATR spectroscopy and partial least squares (PLS), Spectrochim. Acta A Mol. Biomol. Spectrosc., 168, 65, 10.1016/j.saa.2016.05.052
Prestes da Silva, 2020, Concentration of heavy metals in soils under cemetery occupation in Amazonas, Brazil, Soil Sediment Contam. Int. J., 29, 192, 10.1080/15320383.2019.1696280
Pushie, 2014, Elemental and chemically specific X-ray fluorescence imaging of biological systems, Chem. Rev., 114, 8499, 10.1021/cr4007297
Qin, 2014, Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River, J. Geochem. Explor., 138, 33, 10.1016/j.gexplo.2013.12.005
Rasmussen, 2008, Mercury levels in danish medieval human bones, J. Archaeol. Sci., 35, 2295, 10.1016/j.jas.2008.03.003
Rasmussen, 2013, The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark – the chemical life history hypothesis, Herit. Sci., 1, 10, 10.1186/2050-7445-1-10
Rasmussen, 2013, Mercury in soil surrounding medieval human skeletons, Herit. Sci., 1, 16, 10.1186/2050-7445-1-16
Rasmussen, 2017, On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals, 162, 90
Rey, 1991, Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in thev3 PO4 domain, Calcif. Tissue Int., 49, 383, 10.1007/BF02555847
Rey, 2011, 1.111 - bioactive ceramics: physical chemistry, 187
Ringle, 2015, SmartPLS, SmartPLS, 3
Rissech, 2013, Humeral development from neonatal period to skeletal maturity–application in age and sex assessment, Int. J. Legal Med., 127, 201, 10.1007/s00414-012-0713-7
Rodríguez Martínez, 2017, Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra)
Sarstedt, 2017, Partial least squares structural equation modeling, 1
Schuster, 1991, The behavior of mercury in the soil with special emphasis on complexation and adsorption processes - a review of the literature, Water Air Soil Pollut., 56, 667, 10.1007/BF00342308
Silva-Filho, 2021, Impact of environmental mercury exposure on the blood cells oxidative status of fishermen living around Mundaú lagoon in Maceió – Alagoas (AL)Brazil, Ecotoxicology and Environmental Safety, 219, 10.1016/j.ecoenv.2021.112337
Simonescu, 2012, Application of FTIR spectroscopy in environmental studies
Skyllberg, 2003, Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment, Biogeochemistry, 64, 53, 10.1023/A:1024904502633
Sobocká, 2004, Necrosol as a new antrhopogenic soil type, 107
Socrates, 2004
Spongberg, 2000, Inorganic soil contamination from cemetery leachate, Water Air Soil Pollut., 117, 313, 10.1023/A:1005186919370
Streets, 2011, All-time releases of mercury to the atmosphere from human activities, Environ. Sci. Technol., 45, 10485, 10.1021/es202765m
Suzuki, 2004, Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism, J. Bone Miner. Metab., 22, 439, 10.1007/s00774-004-0505-3
Tang, 2020, Understanding mercury methylation in the changing environment: recent advances in assessing microbial methylators and mercury bioavailability, Sci. Total Environ., 714, 10.1016/j.scitotenv.2020.136827
Tang, 2022, Normal concentration range of blood mercury and bone mineral density: a cross-sectional study of National Health and nutrition examination survey (NHANES) 2005–2010, Environ. Sci. Pollut. Res., 29, 7743, 10.1007/s11356-021-16162-w
Tchounwou, 2003, Review: environmental exposure to mercury and its toxicopathologic implications for public health, Environ. Toxicol., 18, 149, 10.1002/tox.10116
Team, 2021
Trueman, 2004, Mineralogical and compositional changes in bones exposed on soil surfaces in amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids, J. Archaeol. Sci., 31, 721, 10.1016/j.jas.2003.11.003
Trueman, 2004, Mineralogical and compositional changes in bones exposed on soil surfaces in amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids, J. Archaeol. Sci., 31, 721, 10.1016/j.jas.2003.11.003
Uslu, 2009, Ecological concerns over cemeteries, AJAR, 4, 1505
Vaculíková, 2011, Characterization and differentiation of kaolinites from selected czech deposits using infrared spectroscopy and differential thermal analysis, Acta Geodyn. Geomater., 8, 59
Walser, 2019, Volcanoes, medicine, and monasticism: investigating mercury exposure in medieval Iceland, Int. J. Osteoarchaeol., 29, 48, 10.1002/oa.2712
Wang, 2002, Age-related changes in the collagen network and toughness of bone, Bone, 31, 1, 10.1016/S8756-3282(01)00697-4
Weiner, 1990, States of preservation of bones from prehistoric sites in the near east: a survey, J. Archaeol. Sci., 17, 187, 10.1016/0305-4403(90)90058-D
WHO, 1998
Who, 2020, 10
Yamada, 1995, Accumulation of mercury in excavated bones of two natives in Japan, Sci. Total Environ., 162, 253, 10.1016/0048-9697(95)04435-4
Yap, 2011, Comparisons of various types of normality tests, J. Stat. Comput. Simul., 81, 2141, 10.1080/00949655.2010.520163
Yoo, 2002, Interrelationship between the concentration of toxic and essential elements in korean tissues, J. Health Sci., 48, 195, 10.1248/jhs.48.195
Zammel, 2021, Evaluation of lumbar vertebrae mineral composition in rat model of severe osteopenia: a fourier transform infrared spectroscopy (FTIR) analysis, Vib. Spectrosc., 115, 10.1016/j.vibspec.2021.103279
Zioła-Frankowska, 2017, An analysis of factors affecting the mercury content in the human femoral bone, Environ. Sci. Pollut. Res. Int., 24, 547, 10.1007/s11356-016-7784-9