Structural equation modeling for the estimation of interconnections between the P cycle and soil properties

Springer Science and Business Media LLC - Tập 109 - Trang 193-207 - 2017
Marcus V. S. Sales1, Seldon Aleixo1, Antonio Carlos Gama-Rodrigues1,2, Emanuela Forestieri Gama-Rodrigues1
1Laboratório de Solos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
2UENF/CCTA/LSOL, Campos dos Goytacazes, Brazil

Tóm tắt

The aim of this study was used a basic hypothetical structural model with latent variables to analyze the interconnections between the pools of stable P (inorganic P (Pi) and organic P (Po)), labile P (Pi and Po) and available P (Mehlich-1 P) and the pools of organic matter (OM) content and physicochemical properties in tropical soils of differing pedogenesis. We used structural equation modeling for designing models for two groups of soil: (1) mineral soils with low to medium organic matter content and (2) mineral soils with high organic matter content and organic soils. The proposed structural models were consistent with the hypothesis of dependence between the pools of P and organic matter as well as physicochemical properties in tropical soils. In general, stable and labile P pools acted as P sources for the available P pool; furthermore, the strength of these structural relationships was strongly associated with soil organic matter content. Yet the pool of physicochemical properties behaved as a sink of P for the labile P pool, however with a beneficial effect in maintaining the stable P pool. The pools of P and OM are strongly bonded in tropical soils under different pedogenesis. All structural models evidenced that various forms of P in different levels of lability could contribute in keeping the supply of bioavailable P, yet its magnitude would be regulated by P buffer capacity of each soil.

Tài liệu tham khảo

Agbenin JO, Iwuafor ENO, Ayuba B (1999) A critical assessment of methods for determining organic phosphorus in savanna soils. Biol Fertl Soils 28:177–181. doi:10.1007/s003740050481 Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159 Bollen KA, Noble MD (2011) Structural equation models and the quantification of behavior. Proc Natl Acad Sci 108:15639–15646. doi:10.1073/pnas.1010661108 Bowman RA (1989) A sequential extraction procedure with concentrated sulfuric acid and diluted base for soil organic phosphorus. Soil Sci Soc Am J 53:326–366. doi:10.2136/sssaj1989.03615995005300020008x Bowman RA, Cole CV (1978) Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction. Soil Sci 125:49–54. doi:10.1097/00010694-197801000-00008 Byrne BM (1994) Structural equation modeling with EQS and EQS/windows: basic concepts, applications and programming. Sage Publications, Thousand Oaks Byrne BM (2009) Structural equation modeling with AMOS: basic concepts, applications and programming, 2nd edn. Taylor and Francis, Routledge Celi L, Barberis E (2005) Abiotic stabilization of organic phosphorus in the environment. In: Turner BL, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CABI Publishing, Wallingford, pp 113–132. doi:10.1079/9780851998220.0000 Condron LM, Tiessen H (2005) Interactions of organic phosphorus in terrestrial ecosystems. In: Turner BL, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CABI Publishing, Wallingford, pp 295–307. doi:10.1079/9780851998220.0000 Condron LM, Moir JO, Tiessen H, Stewart JWB (1990) Critical-evaluation of methods for determining total organic phosphorus in tropical soils. Soil Sci Soc Am J 54:1261–1266. doi:10.2136/sssaj1990.03615995005400050010x Costa MG, Gama-Rodrigues AC, Gonçalves JLM, Gama-Rodrigues EF, Sales MVS, Aleixo S (2016) Labile and non-labile fractions of phosphorus and its transformations in soil under eucalyptus plantations, Brazil. Forests 7:1–15. doi:10.3390/f7010015 Cunha GM, Gama-Rodrigues AC, Costa GS, Velloso ACX (2007) Organic phosphorus in soils under montane forest, pasture and eucalypt in the North of Rio de Janeiro State, Brazil. Rev Bras Ciênc Solo 31:667–672. doi:10.1590/S0100-06832007000400007 Duda GP (2000) Conteúdo de fósforo microbiano, orgânico e biodisponível em diferentes classes de solos. Tese (Thesis), Universidade Federal Rural do Rio de Janeiro, Itaguaí Eisenhauer N, Bowker MA, Grace JB, Powell JR (2015) From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia 58:65–72. doi:10.1016/j.pedobi.2015.03.002 Fornell C, Larcker DF (1981) Evaluating structural equation with unobservable variables and measurement error. J Mark Res 18:39–50. doi:10.2307/3151312 Gama-Rodrigues AC, Sales MVS, Silva PSD, Comerford NB, Cropper WP, Gama-Rodrigues EF (2014) An exploratory analysis of phosphorus transformations in tropical soils using structural equation modeling. Biogeochemistry 118:453–469. doi:10.1007/s10533-013-9946-x Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, New York Grace JB, Scheiner SM, Schoolmaster DR Jr (2015) Structural equation modeling: building and evaluating causal models. In: Fox GA, Negrete-Yankelevich S, Sosa VJ (eds) Ecological statistics: contemporary theory and application. Oxford University Press, Oxford, pp 168–197. doi:10.1093/acprof:oso/9780199672547.001.0001 Grierson PF, Smithson P, Nziguheba G, Radersma S, Comerford NB (2004) Phosphorus dynamics and mobilization by plants. In: Noordwisk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems: concepts and models with multiple plant components. CABI International, Wallingford, pp 127–142. doi:10.1079/9780851996738.0000 Guerra JGM, Almeida DLD, Santos GDA, Fernandes MS (1996) Conteúdo de fósforo orgânico em amostras de solo. Pesq Agropec Bras 31:291–299 Guppy CN, Menzies NW, Moody PW, Blamey FPC (2005) Competitive sorption reactions between phosphorus and organic matter in soil: a review. Aust J Soil 43:189–202. doi:10.1071/SR04049 Hair JF, Anderson RE, Tatham RL, Black WC (2009) Multivariate data analysis. Prentice-Hall Inc=, Upper Saddle River Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195. doi:10.1023/A:1013351617532 Iacobucci D (2010) Structural equations modeling: fit Indices, sample size, and advanced topics. J Consum Psychol 20:90–98. doi:10.1016/j.jcps.2009.09.003 Johnson AH, Frizano J, Vann DR (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135:487–499. doi:10.1007/s00442-002-1164-5 Kenny DA (2014) Measuring model fit. http://davidakenny.net/cm/fit.htm Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704. doi:10.1111/j.1469-8137.2011.03967.x McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286 Nash DM, Haygarth PM, Turner BL, Condron LM, McDowell RW, Richardson AE, Watkins M, Heaven MW (2014) Using organic phosphorus to sustain pasture productivity: a perspective. Geoderma 221–222:11–19. doi:10.1016/j.geoderma.2013.12.004 Nasto MK, Alvarez-Clare S, Lekberg Y, Sullivan BW, Townsend AR, Cleveland CC (2014) Interactions among nitrogen fixation and phosphorus acquisition strategies in lowland tropical rain forests. Ecol Lett 17:1282–1289. doi:10.1111/ele.12335 Olander L, Vitousek P (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49:175–191. doi:10.1023/A:1006316117817 Oliveira RI, Gama-Rodrigues AC, Gama-Rodrigues EF, Zaia FC, Pereira MG, Fontana A (2014) Organic phosphorus in diagnostic surface horizons of different Brazilian soil orders. Rev Bras Ciênc Solo 38:1411–1420. doi:10.1590/S0100-06832014000500006 Reed SC, Townsend AR, Taylor PG, Cleveland CC (2011) Phosphorus cycling in tropical forests growing on highly weathered soils. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: Biological processes in soil phosphorus cycling. Springer, Berlin, pp 339–369. doi:10.1007/s978-3-642-15271-9 Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156. doi:10.1007/s11104-011-0950-4 Rita JCDO, Gama-Rodrigues AC, Gama-Rodrigues EF, Zaia FC, Nunes DAD (2013) Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro. Rev Bras Ciênc Solo 37:1207–1215. doi:10.1590/S0100-06832013000500010 Sales MVS, Gama-Rodrigues AC, Comerford NB, Cropper WP, Gama-Rodrigues EF, Oliveira PHG (2015) Respecification of structural equation models for the P cycle in tropical soils. Nutr Cycl Agroecosyst 102:1–16. doi:10.1007/s10705-015-9706-5 Sato S, Comerford NB (2006) Organic anions and phosphorus desorption and bioavailabilty in a humid Brazilian Ultisol. Soil Sci 171:695–705. doi:10.1097/01.ss.0000228043.10765.79 Souza MF, Soares EMB, Silva IR, Novais RF, Silva MFO (2014) Competitive sorption and desorption of phosphate and citrate in clayey and sandy loam soils. Rev Bras Ciênc Solo 38:1153–1161. doi:10.1590/S0100-06832014000400011 Steidinger BS, Turner BL, Corrales A, Dalling JW (2015) Variability in potential to exploit different soil organic phosphorus compounds among tropical montane tree species. Func Ecol 29:121–130. doi:10.1111/1365-2435.12325 Tiessen H, Stewart JWB, Cole CV (1984) Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci Soc Am J 48:853–858. doi:10.2136/sssaj1984.03615995004800040031x Treseder K, Vitousek P (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954. doi:10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2 Turner BL (2008) Resource partitioning for soil phosphorus: a hypothesis. J Ecol 96:698–702. doi:10.1111/j.1365-2745.2008.01384.x Turner BL, Frossard E, Baldwin DS (2005) Organic phosphorus in the environment. CABI Publishing, Wallingford. doi:10.1079/9780851998220.0000 Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15. doi:10.1890/08-0127.1 Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19. doi:10.1016/0016-7061(76)90066-5 Wiseman CLS, Pütmann W (2006) Interactions between mineral phases in the preservation of soil organic matter. Geoderma 13:109–118 Yang X, Post WM (2011) Phosphorus transformation as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences 8:2907–2916. doi:10.5194/bg-8-2907-2011 Zaia FC, Gama-Rodrigues AC, Gama-Rodrigues EF (2008a) Soil phosphorus forms under leguminous tree species, secondary forest and pasture in Northern Rio de Janeiro State, Brazil. Rev Bras Ciênc Solo 32:1191–1197. doi:10.1590/S0100-06832008000300027 Zaia FC, Gama-Rodrigues AC, Gama-Rodrigues EF, Machado RCR (2008b) Organic phosphorus in soils under cocoa agrosystems. Rev Bras Ciênc Solo 32:1987–1995. doi:10.1590/S0100-06832008000500020 Zaia FC, Gama-Rodrigues AC, Gama-Rodrigues EF, Moço MKS, Fontes AG, Machado RCR, Baligar VC (2012) Carbon, nitrogen, organic phosphorus, microbial biomass and N mineralization in soils under cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 86:197–212. doi:10.1007/s10457-012-9550-4