Structural, electronic, optical and thermodynamic investigations of NaXF 3 (X = Ca and Sr): First-principles calculations

Chinese Journal of Physics - Tập 56 Số 1 - Trang 131-144 - 2018
M. Benkabou1, M. Harmel1, A. Haddou1, A. Yakoubi1, N. Baki1, R. Ahmed2, D. De Kée3,4, S. V. Syrotyuk5, H. Khachai1, R. Khenata6, C. H. Voon7, Mohd Rafie Johan3
1Laboratoire d’étude des Matériaux & Istrumentations Optiques, Physics Department, Djillali Liabès University of Sidi Bel-Abbès, Sidi Bel-Abbès 22000, Algeria
2Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM, Skudai, 81310 Johor, Malaysia
3Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia
4Physics Department, Faculty of Science, University of Sidi-Bel-Abbes, 22000-Algeria
5Semiconductor Electronics Department, National University “Lviv Polytechnic”, S. Bandera str. 12, Lviv 79013, Ukraine
6Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière (LPQ3M), Université de Mascara-29000-Algeria
7Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis, Malaysia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Terki, 2005, Full potential calculation of structural, elastic and electronic properties of BaZrO3 and SrZrO3, Phys. Status Solidi B, 242, 1054, 10.1002/pssb.200402142

Kulkarni, 2012, Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells, Int. J. Hydrogen Energy, 37, 19092, 10.1016/j.ijhydene.2012.09.141

Coey, 1999, Mixed-valence manganites, Adv. Phys., 48, 167, 10.1080/000187399243455

Arar, 2015, Structural, mechanical and electronic properties of sodium based fluoroperovskites NaXF3 (X = Mg,Zn) from first-principle calculations, Mater. Sci. Semiconductor Process., 33, 127, 10.1016/j.mssp.2015.01.040

Horsch, 1986, A new color center laser on the basis of lead-doped KMgF3, Opt. Commun., 60, 69, 10.1016/0030-4018(86)90119-7

Cooke, 1975, Ferromagnetism in lithium holmium fluoride-LiHoF4. I. Magnetic measurements, J. Phys. C, 8, 4083, 10.1088/0022-3719/8/23/021

Heaton, 1982, Electronic energy-band structure of the KMgF3 crystal, Phys. Rev. B, 25, 3538, 10.1103/PhysRevB.25.3538

Eibschutz, 1968, Antiferromagnetic-piezoelectric crystals: BaMe4 (M = Mn, Fe, Co and Ni), Solid State Commun., 6, 737, 10.1016/0038-1098(68)90576-0

Sardar, 1982, Optical absorption and emission from irradiated RbMgF3:Eu2+ and KMgF3:Eu2+, J. Lumin., 27, 401, 10.1016/0022-2313(82)90040-0

Gektin, 1997, High-temperature thermoluminescence of KMgF3-based crystals, J. Lumin., 72, 664, 10.1016/S0022-2313(96)00231-1

Sahnoun, 2005, Full potential calculation of structural, electronic and optical properties of KMgF3, Mater. Chem. Phys., 91, 185, 10.1016/j.matchemphys.2004.11.019

Yanagihara, 2014, Vacuum ultraviolet field emission lamp utilizing KMgF3 thin film phosphor, APL Mater., 2, 046110, 10.1063/1.4871915

Y. Oyama, Optical Member for Vacuum Ultraviolet, and Aligner and Device Manufacture Method Using Same, US Patent 6813070 (2004).

Wang, 2014, A new 12L-hexagonal perovskite Cs4Mg3CaF12: structural transition derived from the partial substitution of Mg2+ with Ca2+, RSC Adv., 4, 54194, 10.1039/C4RA07819E

Yin, 2015, Halide perovskite materials for solar cells: a theoretical review, J. Mater. Chem. A, 3, 8926, 10.1039/C4TA05033A

Edwardson, 1989, Ferroelectricity in perovskitelike NaCaF3 predicted ab initio, Phys. Rev. B, 39, 9738, 10.1103/PhysRevB.39.9738

Boyer, 2000, Predicted properties of NaCaF3, 535, 364

Duan, 2004, Electronic properties of NaCdF3: a first-principles prediction, Phy Rev. B, 69, 033102, 10.1103/PhysRevB.69.033102

Kassan-Ogly, 1986, The immanent chaotization of crystal structures and the resulting diffuse scattering. II. Crystallochemical conditions of perovskite chaotization, Acta Crystallogr. Sect. B, 42, 307, 10.1107/S0108768186098178

Bhalla, 2000, The perovskite structure - a review of its role in ceramic science and technology, Mater. Res. Innov., 4, 3, 10.1007/s100190000062

Levy, 2005, 79

Manser, 2016, Intriguing optoelectronic properties of metal halide perovskites, Chem. Rev., 116, 12956, 10.1021/acs.chemrev.6b00136

Saparov, 2016, Organic–inorganic perovskites: structural versatility for functional materials design, Chem. Rev., 116, 4558, 10.1021/acs.chemrev.5b00715

Sjöstedt, 2000, An alternative way of linearizing the augmented plane-wave method, Solid State Commun., 114, 15, 10.1016/S0038-1098(99)00577-3

Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864

Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, TechnischUniversitat, Wien, Austria, ISBN 3-9501031-1-2 (2001).

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Perdew, 1992, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 45, 13244, 10.1103/PhysRevB.45.13244

Blochl, 1994, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B, 49, 16223, 10.1103/PhysRevB.49.16223

Robie, 1966, Some Debye temperatures from singlecrystal elastic constant data, J. Appl. Phys., 37, 2659, 10.1063/1.1782100

Wang, 2005, Structural and elastic properties of MgB2 under high pressure, Phys. Rev. B, 72, 10.1103/PhysRevB.72.172502

Maradudin, 1971

Francisco, 2001, Atomistic simulation of SrF2 polymorphs, Phys. Rev. B, 63, 094107, 10.1103/PhysRevB.63.094107

Flórez, 2002, First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides, Phys. Rev. B, 66, 10.1103/PhysRevB.66.144112

Blanco, 2004, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 158, 57, 10.1016/j.comphy.2003.12.001

Francisco, 1998, Quantum-mechanical study of thermodynamic and bonding properties of MgF2, J. Phys. Chem., 102, 1595, 10.1021/jp972516j

Murnaghan, 1944, The compressibility of media under extreme pressure, Proc. Natl. Acad. Sci. USA, 3, 244, 10.1073/pnas.30.9.244

Bouafia, 2015, Theoretical investigation of structural, elastic, electronic, and thermal properties of KCaF3, K0.5Na0.5CaF3 and NaCaF3 perovskites, Superlatt. Microstruct., 82, 525, 10.1016/j.spmi.2015.03.004

Mehl, 1993, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds, Phys. Rev. B, 47, 2493, 10.1103/PhysRevB.47.2493

Harmel, 2012, DFT-based ab initio study of the electronic and optical properties of cesium based fluoro-perovskite CsMF3 (M = Ca and Sr), Modern Phys. B, 26, 10.1142/S0217979212501998

Harmel, 2012, Full-potential calculation of structural, electronic, and thermodynamic properties of fluoroperovskite {CsMF3} (M = Be and Mg), Int. J. Thermophys., 33, 2339, 10.1007/s10765-012-1353-3

Harmel, 2015, Ab initio study of the mechanical, thermal, and optoelectronic properties of the cubic CsBaF3, Acta Phys. Polonica A, 128, 34, 10.12693/APhysPolA.128.34

Mubarak, 2012, The electronic and optical properties of the fluoroperovskite BaXF3 (X = Li, Na, K, and Rb) compounds, Comput. Mater. Sci., 59, 6, 10.1016/j.commatsci.2012.02.020

Onida, 2002, Electronic excitations: density-functional versus many-body Green's-function approaches, Rev. Mod. Phys., 74, 601, 10.1103/RevModPhys.74.601

Dufek, 1994, Applications of Engel and Vosko's generalized gradient approximation in solids, Phys. Rev. B, 50, 7279, 10.1103/PhysRevB.50.7279

Tell, 1956, Causality and the dispersion relation: logical foundations, Phys. Rev., 104, 1760, 10.1103/PhysRev.104.1760

Abt, 1994, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Physica B, 1451, 10.1016/0921-4526(94)91225-4

Dressel, 2002

Petit, 1819, Ann. Chim. Phys., 10, 395

Debye, 1912, ZurTheorie der spezifischenWärmen, Ann. Phys., 39, 789, 10.1002/andp.19123441404