Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey

Structure - Tập 8 Số 5 - Trang 493-504 - 2000
András Szilágyi1,2, Péter Závodszky1,2
1Department of Biological Physics, Eötvös Loránd University, Pázmány Péter stny 1/A, H-1117 Budapest, Hungary
2Institute of Enzymology, Biological Research Centre, Hungarian Academy of Sciences, H-1518 Pf. 7 Budapest, Hungary

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jaenicke, 1991, Protein stability and molecular adaptation to extreme conditions, Eur. J. Biochem., 202, 715, 10.1111/j.1432-1033.1991.tb16426.x

Jaenicke, 1998, The stability of proteins in extreme environments, Curr. Opin. Struct. Biol., 8, 738, 10.1016/S0959-440X(98)80094-8

Jaenicke, 1990, Proteins under extreme physical conditions, FEBS Lett., 268, 344, 10.1016/0014-5793(90)81283-T

Russell, 1995, Engineering thermostability: lessons from thermophilic proteins, Curr. Opin. Biotechnol., 6, 370, 10.1016/0958-1669(95)80064-6

Querol, 1996, Analysis of protein conformational characteristics related to thermostability, Protein Eng., 9, 265, 10.1093/protein/9.3.265

Walker, 1980, Heat stability of a tetrameric enzyme, D-glyceraldehyde-3-phosphate dehydrogenase, Eur. J. Biochem., 108, 581, 10.1111/j.1432-1033.1980.tb04753.x

Davies, 1993, The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent, Proteins, 15, 283, 10.1002/prot.340150306

Fujinaga, 1993, Refined crystal structure of the seryl-tRNA synthetase from Thermus thermophilus at 2.5 Å resolution, J. Mol. Biol., 234, 222, 10.1006/jmbi.1993.1576

Chan, 1995, Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase, Science, 267, 1463, 10.1126/science.7878465

Hecht, 1995, Crystal structure of NADH oxidase from Thermus thermophilus, Nat. Struct. Biol., 2, 1109, 10.1038/nsb1295-1109

Korndörfer, 1995, The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 Å resolution, J. Mol. Biol., 246, 511, 10.1006/jmbi.1994.0103

Yip, 1995, The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures, Structure, 3, 1147, 10.1016/S0969-2126(01)00251-9

Aguilar, 1997, Crystal structure of the β-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus: resilience as a key factor in thermostability, J. Mol. Biol., 271, 789, 10.1006/jmbi.1997.1215

Harris, 1997, Structural basis of the properties of an industrially relevant thermophilic xylanase, Proteins, 29, 77, 10.1002/(SICI)1097-0134(199709)29:1<77::AID-PROT6>3.0.CO;2-C

Russell, 1997, The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 Å resolution, Biochemistry, 36, 9983, 10.1021/bi9705321

Wallon, 1997, Crystal structures of Escherichia coli and Salmonella typhimurium 3-isopropylmalate dehydrogenase and comparison with their thermophilic counterpart from Thermus thermophilus, J. Mol. Biol., 266, 1016, 10.1006/jmbi.1996.0797

Argos, 1979, Thermal stability and protein structure, Biochemistry, 18, 5698, 10.1021/bi00592a028

Menendez-Arias, 1989, Engineering protein thermal stability. Sequence statistics point to residue substitutions in α-helices, J. Mol. Biol., 206, 397

Böhm, 1994, Relevance of sequence statistics for the properties of extremophilic proteins, Int. J. Pept. Protein Res., 43, 97, 10.1111/j.1399-3011.1994.tb00380.x

Spassov, 1995, The optimization of protein–solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions, Protein Sci., 4, 1516, 10.1002/pro.5560040809

Warren, 1995, Composition analysis of alpha-helices in thermophilic organisms, Protein Eng., 8, 905, 10.1093/protein/8.9.905

Karshikoff, 1998, Proteins from thermophilic and mesophilic organisms essentially do not differ in packing, Protein Eng., 11, 867, 10.1093/protein/11.10.867

Vogt, 1997, Protein thermal stability: hydrogen bonds or internal packing?, Fold. Des., 2, S40, 10.1016/S1359-0278(97)00062-X

Vogt, 1997, Protein thermal stability, hydrogen bonds, and ion pairs, J. Mol. Biol., 269, 631, 10.1006/jmbi.1997.1042

Blamey, 1994, Properties of a thermostable 4Fe-ferredoxin from the hyperthermophilic bacterium Thermotoga maritima, FEMS Microbiol. Lett., 121, 165, 10.1111/j.1574-6968.1994.tb07094.x

Tomschy, 1994, The effect of ion pairs on the thermal stability of d-glyceraldehyde 3–phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima, Protein Eng., 7, 1471, 10.1093/protein/7.12.1471

Kletzin, 1996, Molecular and phylogenetic characterization of pyruvate and 2–ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritima, J. Bacteriol., 178, 248, 10.1128/jb.178.1.248-257.1996

Auerbach, 1997, Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability, Structure, 5, 1475, 10.1016/S0969-2126(97)00297-9

Auerbach, 1998, Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: the crystal structure at 2.1 Å resolution reveals strategies for intrinsic protein stabilization, Structure, 6, 769, 10.1016/S0969-2126(98)00078-1

Vetriani, 1998, Protein thermostability above 100°C: a key role for ionic interactions, Proc. Natl Acad. Sci. USA, 95, 12300, 10.1073/pnas.95.21.12300

Mrabet, 1992, Arginine residues as stabilizing elements in proteins, Biochemistry, 31, 2239, 10.1021/bi00123a005

Perutz, 1975, Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2, Nature, 255, 256, 10.1038/255256a0

Kelly, 1993, Determinants of protein thermostability observed in the 1.9 Å crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus, Biochemistry, 32, 3913, 10.1021/bi00066a010

Goldman, 1995, How to make my blood boil, Structure, 3, 1277, 10.1016/S0969-2126(01)00263-5

Rice, 1996, Insights into the molecular basis of thermal stability from the structure determination of Pyrococcus furiosus glutamate dehydrogenase, FEMS Microbiol. Rev., 18, 105, 10.1111/j.1574-6976.1996.tb00230.x

Musafia, 1995, Complex salt bridges in proteins: statistical analysis of structure and function, J. Mol. Biol., 254, 761, 10.1006/jmbi.1995.0653

Horovitz, 1990, Strength and co-operativity of contributions of surface salt bridges to protein stability, J. Mol. Biol., 216, 1031, 10.1016/S0022-2836(99)80018-7

Sali, 1991, Surface electrostatic interactions contribute little of stability of barnase, J. Mol. Biol., 220, 779, 10.1016/0022-2836(91)90117-O

Sun, 1991, Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis, Biochemistry, 30, 7142, 10.1021/bi00243a015

Hendsch, 1994, Do salt bridges stabilize proteins? A continuum electrostatic analysis, Protein Sci., 3, 211, 10.1002/pro.5560030206

Waldburger, 1995, Are buried salt bridges important for protein stability and conformational specificity?, Nat. Struct. Biol., 2, 122, 10.1038/nsb0295-122

Elcock, 1998, The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins, J. Mol. Biol., 284, 489, 10.1006/jmbi.1998.2159

Makhatadze, 1995, Energetics of protein structure, Adv. Protein Chem., 47, 307, 10.1016/S0065-3233(08)60548-3

Dill, 1990, Dominant forces in protein folding, Biochemistry, 29, 7133, 10.1021/bi00483a001

Pace, 1996, Forces contributing to the conformational stability of proteins, FASEB J., 10, 75, 10.1096/fasebj.10.1.8566551

Hooft, 1996, Errors in protein structures, Nature, 381, 272, 10.1038/381272a0

Fersht, 1993, Principals of protein stability derived from protein engineering experiments, Curr. Opin. Struct. Biol., 3, 75, 10.1016/0959-440X(93)90205-Y

Woese, 1998, The universal ancestor, Proc. Natl Acad. Sci. USA, 95, 6854, 10.1073/pnas.95.12.6854

Galtier, 1999, A nonhyperthermophilic common ancestor to extant life forms, Science, 283, 220, 10.1126/science.283.5399.220

Holt, 1989

Holt, 1994

Holm, 1992, A database of protein structure families with common folding motifs, Protein Sci., 1, 1691, 10.1002/pro.5560011217

Connolly, 1993, The molecular surface package, J. Mol. Graph., 11, 139, 10.1016/0263-7855(93)87010-3

Tunon, 1992, Molecular surface area and hydrophobic effect, Protein Eng., 5, 715, 10.1093/protein/5.8.715

Hubbard, 1994, Intramolecular cavities in globular proteins, Protein Eng., 7, 613, 10.1093/protein/7.5.613

Vriend, 1990, WHAT IF: a molecular modeling and drug design program, J. Mol. Graph., 8, 52, 10.1016/0263-7855(90)80070-V

Barlow, 1983, Ion-pairs in proteins, J. Mol. Biol., 168, 867, 10.1016/S0022-2836(83)80079-5

Oobatake, 1993, Hydration and heat stability effects on protein unfolding, Prog. Biophys. Mol. Biol., 59, 237, 10.1016/0079-6107(93)90002-2

Creamer, 1995, Modeling unfolded states of peptides and proteins, Biochemistry, 34, 16245, 10.1021/bi00050a003

Kabsch, 1983, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 22, 2577, 10.1002/bip.360221211

Thompson, 1999, Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability, J. Mol. Biol., 290, 595, 10.1006/jmbi.1999.2889