Structural, dielectric and electrical properties of Ba/Zr modified BiFeO3 electroceramics

Journal of Electroceramics - Tập 50 Số 3 - Trang 82-96 - 2023
Samantray, N. P.1, Arya, B. B.1, Choudhary, R. N. P.1
1Multifunctional Materials Research Laboratory, Department of Physics, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India

Tóm tắt

The preliminary structural and frequency-temperature dependence of dielectric and electrical characteristics of Ba/Zr modified Bismuth ferrite(BiFeO3) i.e.(Bi1-xBax)(Fe1-xZrx)O3; x = 0.05, 0.1, 0.15, 0.20 at room temperature have been reported. The samples are produced in a perovskite rhombohedral structure, according to the X-ray diffraction pattern and analysis of room temperature XRD data. The SEM photographs are useful for the micro-structural view of the synthesized compounds. Dielectric and electrical characteristics across a wide temperature range 25 °C to 300 °C at different frequencies ranging from 1 kHz to 1 MHz have provided many important results including dielectric dispersion, conduction mechanism, relaxation process and ferroelectricity of the prepared samples. The contributions of grains and grain boundaries towards the net resistance and capacitance of the samples are found from the Nyquist plots. The types of conduction mechanism have been studied from ac-conductivity study of the samples. The Ohmic behaviour is verified by the J–E characteristics of the prepared samples, which have a slope closer to 1. The electrical polarization study through hysteresis loops at room temperature confirms the ferroelectric behavior of the studied materials. According to the experimental results obtained here, the synthesized materials could be beneficial as electronic components in the electronic industries.

Tài liệu tham khảo

citation_journal_title=Ferroelectrics; citation_author=H Schmid; citation_volume=162; citation_publication_date=1994; citation_pages=317; citation_doi=10.1080/00150199408245120; citation_id=CR1 S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. (2016).  https://doi.org/10.1007/s10854-016-5084-2 citation_journal_title=Nat. Mater.; citation_title=Multiferroics: towards a magnetoelectric memory; citation_author=M Bibes, A Barthélémy; citation_volume=7; citation_publication_date=2008; citation_pages=425; citation_doi=10.1038/nmat2189; citation_id=CR3 citation_journal_title=Nat. Mater.; citation_title=Data storage: multiferroic memories; citation_author=JF Scott; citation_volume=6; citation_publication_date=2007; citation_pages=256; citation_doi=10.1038/nmat1868; citation_id=CR4 citation_journal_title=Nat. Lond.; citation_author=W Eerenstein, ND Mathur, JF Scott; citation_volume=442; citation_publication_date=2006; citation_pages=759; citation_doi=10.1038/nature05023; citation_id=CR5 citation_journal_title=Ann. Rev. Mater. Res.; citation_title=BiFeO3 thin films: a playground for exploring electric-field control of multifunctionalities; citation_author=JC Yang, Q He, P Yu, YH Chu; citation_volume=45; citation_publication_date=2015; citation_pages=249-275; citation_doi=10.1146/annurev-matsci-070214-020837; citation_id=CR6 citation_journal_title=Appl. Phys. Lett.; citation_title=Nonmagnetic Fe-site doping of BiFeO3 multiferroic ceramics; citation_author=J Wei, R Haumont, R Jarrier, P Berhtet, B Dkhi; citation_volume=96; citation_publication_date=2010; citation_doi=10.1063/1.3327885; citation_id=CR7 citation_journal_title=Appl. Phys. Lett.; citation_title=Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films; citation_author=Y Wang, C-W Nana; citation_volume=89; citation_publication_date=2006; citation_doi=10.1063/1.2222242; citation_id=CR8 Z. Wen, G. Hu, S. Fan, C. Yang, W. Wu, Y. Zhou, X. Chen, S. Cui, Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO3 films. Thin Solid Film. 517, 4497–4501 (2009) citation_journal_title=Appl. Phys. Lett.; citation_author=FZ Huang, XM Lu, WW Lin, XM Wu, Y Kan, JS Zhu; citation_volume=89; citation_publication_date=2006; citation_doi=10.1063/1.2404942; citation_id=CR10 citation_journal_title=Ceram. Int.; citation_author=PC Sati, M Arora, S Chauhan, M Kumar, S Chhoker; citation_volume=40; citation_publication_date=2014; citation_pages=7805; citation_doi=10.1016/j.ceramint.2013.12.124; citation_id=CR11 citation_journal_title=J. Appl. Phys.; citation_author=VA Khomchenko; citation_volume=103; citation_publication_date=2008; citation_doi=10.1063/1.2836802; citation_id=CR12 citation_journal_title=Rev. B; citation_author=G Catalan, K Sardar, NS Church, JF Scott, RJ Harrison, SAT RedfernPhys; citation_volume=79; citation_publication_date=2009; citation_doi=10.1103/PhysRevB.79.212415; citation_id=CR13 citation_journal_title=J. Appl. Phys.; citation_author=S Mukherjee, A Srivastava, R Gupta, A Garg; citation_volume=115; citation_publication_date=2014; citation_doi=10.1063/1.4879247; citation_id=CR14 Y. Wang, C.-W. Nan, Structural and ferroic properties of Zr-doped BiFeO3 thin films, Ferroelectrics 357, 172–178 (2007) J. Xie, Y. Liu, C. Feng, X. Pan, Preparation and characterization of Zr4+-doped BiFeO3 ceramics, Mater. Lett. 96, 143–145 (2013) citation_journal_title=J. Magn. Magn. Mater.; citation_title=Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites; citation_author=DA Vinnik, FV Podgornov, NS Zabeivorota, EA Trofimov, VE Zhivulin, AS Chernukha, MV Gavrilyak, SA Gudkova, DA Zherebtsov, AV Ryabov, SV Trukhanov, TI Zubar, LV Panina, SV Podgornaya, MV Zdorovets, AV Trukhanov; citation_volume=498; citation_publication_date=2020; citation_doi=10.1016/j.jmmm.2019.166190; citation_id=CR17 V. Purohit, R. Padhee, R.N.P. Choudhary, Dielectric and impedance spectroscopy of Bi(Ca0.5Ti0.5)O3 ceramic. Ceram. Int. 44, 3993–3999 (2018) citation_journal_title=J. Alloys compd.; citation_author=MA Sulaiman, SD Hutagalung, MF Ain, ZA Ahmad; citation_volume=493; citation_publication_date=2010; citation_pages=486-492; citation_doi=10.1016/j.jallcom.2009.12.137; citation_id=CR19 citation_journal_title=Appl. Phys. Lett.; citation_author=GD Hu, X Cheng, WB Wu, CH Yang; citation_volume=91; citation_publication_date=2007; citation_doi=10.1063/1.2822826; citation_id=CR20 citation_journal_title=Ceram. Int.; citation_author=AR Makhdoom, MJ Akhtar, MA Rafiq, MM Hassan; citation_volume=38; citation_publication_date=2012; citation_pages=3829; citation_doi=10.1016/j.ceramint.2012.01.032; citation_id=CR21 P. Pandit, S. Satapathy, P.K Gupta, Effect of La substitution on conductivity and dielectric properties of Bi1–xLaxFeO3 ceramics: an impedance spectroscopy analysis. Phys. B. 406, 2669–2677 (2011) A.R. West, D.C. Sinclair, N. Hirose, Characterization of Electrical Materials, Especially Ferroelectrics, by Impedance Spectroscopy. J. Electr. Ceram. 1, 65–71 (1997) S. Pattanayak, R.N.P. Choudhary, P.R. Das, S.R. Shannigrahi, Effect of Dy-substitution on structural, electrical and magnetic properties of multiferroic BiFeO3 ceramics. Ceram. Int. 40, 7983–7991 (2014) citation_journal_title=Thin Solid Films; citation_author=M Tang, B Jiang, W Zhang, Y Xiao, Y Zhou, J He, J Ouyang; citation_volume=520; citation_publication_date=2012; citation_pages=6684-6689; citation_doi=10.1016/j.tsf.2012.07.024; citation_id=CR25 citation_title=Dielectrics; citation_publication_date=1964; citation_id=CR26; citation_author=JC Anderson; citation_publisher=Chapman & Hall citation_title=Principles of Electronic Ceramics; citation_publication_date=1990; citation_id=CR27; citation_author=LL Hench; citation_author=JK West; citation_publisher=Wiley citation_journal_title=Ceram. Int.; citation_author=RP Pawar, V Puri; citation_volume=40; citation_publication_date=2014; citation_pages=10423; citation_doi=10.1016/j.ceramint.2014.03.013; citation_id=CR28 S. Nath, S.K. Barik, R.N.P. Choudhary, Electrical and ferroelectric characteristics of (LaLi)1/2 (Fe2/3Mo1/3)O3. J. Mater. Sci. Mater. Electron. 27, 8717–8724 (2016) P.-J. Wang, D. Zhou, H.-H. Guo, W.-F. Liu, J.-Z. Su, M.-S. Fu, C. Singh, S. Trukhanov, A. Trukhanov, Ultrahigh enhancement rate of energy density of flexible polymer nanocomposites by core-shell BaTiO3@MgO structures as fillers. J. Mater. Chem. A. 8, 11124–11132 (2020) D.I. Shlimas, M.V. Zdorovets, A.L. Kozlovskiy, Synthesis and resistance to helium swelling of Li2TiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 12903–12912 (2020) S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 87, 256 (2004) citation_title=Impedance Spectroscopy Theory, Experiments and Applications; citation_publication_date=2005; citation_id=CR33; citation_author=JR Macdonald; citation_author=WB Johnson; citation_publisher=Wiley S. Sen, R.N.P. Choudhary, Impedance studies of Sir modified BaZr0.05Ti0.95O3, ceramics. Mater. Chem. Phys. 87, 256–263 (2006) Belboukhari, Z. Abkhar, Y. Gagou, J. Belhadi, R. Elmoznine, D. Mezzane, M. Ei Marssi, I. Luk’yanchuk, Dielectric properties and relaxation phenomena in the diffuse ferroelectric phase transition in K3Li2Nb5O15 ceramic. Eur. Phys. J. B 85, 1–9 (2012) citation_journal_title=J. Alloys Compd; citation_title=Thakur, AC Impedance analysis of the effect of dopant concentration on electrical properties of calcium modified BaSnO3; citation_author=BP Kumar, RNP Singh, AK Choudhary; citation_volume=394; citation_publication_date=2005; citation_pages=292; citation_doi=10.1016/j.jallcom.2004.11.012; citation_id=CR36 citation_journal_title=Appl. Phys. A; citation_title=Impedance spectroscopy of Gd-doped BiFeO3 multiferroics; citation_author=S Pattanayak, BN Parida, PR Das, RNP Choudhary; citation_volume=112; citation_publication_date=2013; citation_pages=387; citation_doi=10.1007/s00339-012-7412-6; citation_id=CR37 R.N.P. Behera, P.R. Choudhary, Das Development of multiferroic polymer nanocomposite from PVDF and (Bi0.5Ba0.25Sr0.25)(Fe0.5Ti0.5)O3. J. Mater. Sci. Mater. Electron. 28, 2586–2597 (2017).  https://doi.org/10.1007/s10854-016-5834-1 N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical an magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci. Mater. Electron. (2017)  https://doi.org/10.1007/s10854-017-6359-y citation_journal_title=Mater. Chem. Phys.; citation_title=Transport properties and relaxation studies in BaO substituted Ag2O–V2O5–TeO2 glass system; citation_author=M Pant, DK Kanchan, N Gondaliyam; citation_volume=115; citation_publication_date=2009; citation_pages=98; citation_doi=10.1016/j.matchemphys.2008.11.047; citation_id=CR40 J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812–2819 (2003) J.S. Kim, Electric Modulus Spectroscopy of Lithium Tetraborate (Li2B4O7) Single Crystal. J. Phys. Soc. Jpn. 70, 3129–3133 (2001) citation_title=Universal Relaxation Law; citation_publication_date=1996; citation_id=CR43; citation_author=AK Jonscher; citation_publisher=Chelsea Dielectrics Press S.K. Dehury, K. Parida, R.N.P. Choudhary, Dielectric, impedance and magneto-electric characteristics of Bi0.5Sr0.5Fe0.5Ce0.5O3 electronic material. J. Mater. Sci. Mater. Electron. (2017).  https://doi.org/10.1007/s10854-017-6816-7 citation_journal_title=J. Am. Ceram. Soc.; citation_title=Impedance Spectroscopy of Undoped BaTiO3 Ceramics; citation_author=N Hirose, AR West; citation_volume=79; citation_publication_date=1996; citation_pages=1633; citation_doi=10.1111/j.1151-2916.1996.tb08775.x; citation_id=CR45 D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998) X. Liu, X. Tan, Giant Strains in Non-Textured (Bi 1/2 Na 1/2 )TiO 3 –Based Lead-Free Ceramics. Adv. Mater. 28, 574–578 (2016) X. Liu, Design and development of high-performance lead-free piezoelectric ceramics., Graduate Theses and Dissertations. 14956 (2015) W. Bai, X. Zhao, Y. Huang, Y. Ding, L. Wang, P. Zheng, P. Lic, J. Zhai, Integrating chemical engineering and crystallographic texturing design strategy for the realization of practically viable lead-free sodium bismuth titanate-based incipient piezoceramics. Dalton Trans. 49, 8661 (2020) M.M. Kamal, A.H. Bhuiyan, Direct Current Electrical Conduction Mechanism in Plasma Polymerized Pyrrole Thin Films. J. Modern Sci. Technol. 2, 1–9 (2014) X.G. Tang, J. Wang, Y.W. Zhang, H.L.W. Chan, Leakage current and relaxation characteristics of highly (111)-oriented lead calcium titanate thin films. J. Appl. Phys. 94, 5163 (2003)