Structural design and adaptive tracking control of automatic welding robot for liquefied natural gas containment system
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kumar S, Kwon H-T, Choi K-H, et al. LNG: an eco-friendly cryogenic fuel for sustainable development. Appl Energy. 2011;88(12):4264–73. https://doi.org/10.1016/j.apenergy.2011.06.035.
Zalar M, Diebold L, Selected Hydrodynamic Issues in Design of Large LNG Carriers, in: RINA ICSOT, Busan, South Korea., 2006.
He T, Chong ZR, Zheng J, et al. LNG cold energy utilization: prospects and challenges. Energy. 2019;170:557–68. https://doi.org/10.1016/j.energy.2018.12.170.
Graczyk M, Moan T, Wu M. Extreme sloshing and whipping-induced pressures and structural response in membrane LNG tanks. Ships Offshore Struct. 2007;2(3):201–16. https://doi.org/10.1080/17445300701423049.
Choe J, Kim KH, Lee D, et al. Glass composite vibration isolating structure for the LNG cargo containment system. Compos Struct. 2014;107:469–75. https://doi.org/10.1016/j.compstruct.2013.08.013.
Yu YH, Kim BG, Lee DG. Cryogenic reliability of composite insulation panels for liquefied natural gas (LNG) ships. Compos Struct. 2012;94(2):462–8. https://doi.org/10.1016/j.compstruct.2011.08.009.
Lee D-H, Ha M-K, Kim S-Y, et al. Research of design challenges and new technologies for floating LNG. Int J Naval Archit Ocean Eng. 2014;6(2):307–22. https://doi.org/10.2478/IJNAOE-2013-0181.
Kim M-S, Kwon S-B, Kim S-K, et al. Impact failure analysis of corrugated steel plate in LNG containment cargo system. J Constr Steel Res. 2019;156:287–301. https://doi.org/10.1016/j.jcsr.2019.02.008.
Lee D, Yoon SH, Kim KH, et al. Composite anti-buckling structure for the corrugations of liquefied hydrogen containers. Compos Struct. 2013;95:492–9. https://doi.org/10.1016/j.compstruct.2012.07.004.
Ang MH Jr, Lin W, Lim S. Walk-through programmed robot for welding in shipyards. Ind Robot Int J. 1999;26:377–88. https://doi.org/10.1108/01439919910284000.
Lee D, Lee S, Ku N, et al. Development of a mobile robotic system for working in the double-hulled structure of a ship. Robot Comput Integr Manuf. 2010;26(1):13–23. https://doi.org/10.1016/j.rcim.2009.01.003.
Ku N, Cha J-h, Lee K-Y, et al. Development of a mobile welding robot for double-hull structures in shipbuilding. J Mar Sci Technol. 2010;15(4):374–85. https://doi.org/10.1007/s00773-010-0099-5.
Rout A, Deepak BBVL, Biswal BB. Advances in weld seam tracking techniques for robotic welding: a review. Robot Comput Integr Manuf. 2019;56:12–37. https://doi.org/10.1016/j.rcim.2018.08.003.
Li X, Li X, Khyam MO, et al. Robust welding seam tracking and recognition. IEEE Sens J. 2017;17(17):5609–17. https://doi.org/10.1109/JSEN.2017.2730280.
Chen S, Liu J, Chen B, et al. Universal fillet weld joint recognition and positioning for robot welding using structured light. Robot Comput Integr Manuf. 2022;74:102279. https://doi.org/10.1016/j.rcim.2021.102279.
Lei T, Rong Y, Wang H, et al. A review of vision-aided robotic welding. Comput Ind. 2020;123:103326. https://doi.org/10.1016/j.compind.2020.103326.
Hong TS, Ghobakhloo M, Khaksar W. 6.04–Robotic welding technology. Compr Mater Process. 2014. https://doi.org/10.1016/B978-0-08-096532-1.00604-X.
Lee D Y, Jung J H, Han S H, et al. (2004) Spider robot - automatic transfer system of the plasma welding machine for LNGC membrane sheet. SICE 2004 Annual Conference 2:1880–1884 vol. 1882.
Yi J, Qingqing H, Zhaoen D, et al. Structural design and kinematic analysis of a welding robot for liquefied natural gas membrane tank automatic welding. Int J Adv Manuf Technol. 2022;122:1–14. https://doi.org/10.1007/s00170-022-09861-2.
Guo L, Zhang H. Autonomous mobile welding robot for discontinuous weld seam recognition and tracking. Int J Adv Manuf Technol. 2022. https://doi.org/10.1007/s00170-021-08616-9.
Lee D, Ku N, Kim TW, et al. Development and application of an intelligent welding robot system for shipbuilding. Robot Comput Integr Manuf. 2011;27(2):377–88. https://doi.org/10.1016/j.rcim.2010.08.006.
Guo J, Zhu Z, Sun B, et al. A novel field box girder welding robot and realization of all-position welding process based on visual servoing. J Manuf Process. 2021;63:70–9. https://doi.org/10.1016/j.jmapro.2020.04.054.
Le J, Zhang H, Chen X. Realization of rectangular fillet weld tracking based on rotating arc sensors and analysis of experimental results in gas metal arc welding. Robot Comput Integr Manuf. 2018;49:263–76. https://doi.org/10.1016/j.rcim.2017.06.004.
