Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora

Journal of Molecular Structure - Tập 1128 - Trang 572-578 - 2017
Silvia Groiss1, Raja Selvaraj1, Thivaharan Varadavenkatesan1, Ramesh Vinayagam1
1Department of Biotechnology, Manipal Institute of Technology, Manipal, Karnataka 576104, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Tesh, 2014, Nano-composites for water remediation: a review, Adv. Mater., 26, 6056, 10.1002/adma.201401376

Nadagouda, 2009, Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants, Cryst. Growth Des., 9, 4979, 10.1021/cg9007685

Litvin, 2013, Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 108, 115, 10.1016/j.saa.2013.01.049

Litvin, 2012, Kinetic and mechanism formation of silver nanoparticles coated by synthetic humic substances, Colloids Surf. A: Physicochem. Eng. Aspects, 414, 234, 10.1016/j.colsurfa.2012.08.036

Venkateswarlu, 2014, A novel green synthesis of Fe 3 O 4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb (II) from aqueous environment, Arabian J. Chem.

Cheng, 2012, Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater, Int. J. Photoenergy, 2012, 10.1155/2012/608298

Montesinos, 2014, Visible light enhanced Cr (VI) removal from aqueous solution by nanoparticulated zerovalent iron, Catal. Commun., 46, 57, 10.1016/j.catcom.2013.11.024

Wang, 2012, Water-soluble Fe 3 O 4 nanoparticles with high solubility for removal of heavy-metal ions from waste water, Dalton Trans., 41, 4544, 10.1039/c2dt11827k

Basu, 2011, Arsenic (III) removal performances in the absence/presence of groundwater occurring ions of agglomerated Fe (III)–Al (III) mixed oxide nanoparticles, J. Ind. Eng. Chem., 17, 834, 10.1016/j.jiec.2011.09.002

Giraldo, 2013, Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization, Adsorption, 19, 465, 10.1007/s10450-012-9468-1

Sohrabi, 2014, "Optimization of Direct Yellow 12 dye removal by nanoscale zero-valent iron using response surface methodology, J. Ind. Eng. Chem., 20, 2535, 10.1016/j.jiec.2013.10.037

Shahwan, 2011, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes, Chem. Eng. J., 172, 258, 10.1016/j.cej.2011.05.103

Weng, 2013, Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite, Ind. Crops Prod., 51, 342, 10.1016/j.indcrop.2013.09.024

Smuleac, 2011, Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics, J. Membr. Sci., 379, 131, 10.1016/j.memsci.2011.05.054

Jarošová, 2015, Can zero-valent iron nanoparticles remove waterborne estrogens?, J. Environ. Manag., 150, 387

Wang, 2014, Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater, Sci. Total Environ., 466, 210, 10.1016/j.scitotenv.2013.07.022

Prucek, 2011, The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles, Biomaterials, 32, 4704, 10.1016/j.biomaterials.2011.03.039

Kharisov, 2012, Iron-containing nanomaterials: synthesis, properties, and environmental applications, RSC Adv., 2, 9325, 10.1039/c2ra20812a

Uddin, 2011, Cytotoxic effects of Bangladeshi medicinal plant extracts, Evid. Based Complement. Altern. Med., 2011, 10.1093/ecam/nep111

Paguigan, 2014, Anti-ulcer activity of leguminosae plants, Arq. Gastroenterol., 51, 64, 10.1590/S0004-28032014000100013

Njagi, 2010, Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts, Langmuir, 27, 264, 10.1021/la103190n

Cadenas, 1996

Huang, 2014, Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 130, 295, 10.1016/j.saa.2014.04.037

Hoag, 2009, Degradation of bromothymol blue by ‘greener’nano-scale zero-valent iron synthesized using tea polyphenols, J. Mater. Chem., 19, 8671, 10.1039/b909148c

Kumar, 2014, Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication, J. Saudi Chem. Soc., 18, 364

Machado, 2013, Green production of zero-valent iron nanoparticles using tree leaf extracts, Sci. Total Environ., 445, 1, 10.1016/j.scitotenv.2012.12.033

Huang, 2014, Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 117, 801, 10.1016/j.saa.2013.09.054

Huang, 2015, Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 137, 154, 10.1016/j.saa.2014.08.116

Vidhu, 2014, Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 117, 102, 10.1016/j.saa.2013.08.015

Wang, 2015, Characterization of iron–polyphenol complex nanoparticles synthesized by Sage (Salvia officinalis) leaves, Environ. Technol. Innovation, 4, 92, 10.1016/j.eti.2015.05.004

Feitz, 2005, Oxidative transformation of contaminants using colloidal zero-valent iron, Colloids Surf. A Physicochem. Eng. Aspects, 265, 88, 10.1016/j.colsurfa.2005.01.038

Lee, 2008, Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli, Environ. Sci. Technol., 42, 4927, 10.1021/es800408u

Iconaru, 2012, Biocompatible magnetic iron oxide nanoparticles doped dextran thin films produced by spin coating deposition solution, Dig. J. Nanomater. Biostructures., 7, 399

Sondi, 2004, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275, 177, 10.1016/j.jcis.2004.02.012

Arokiyaraj, 2013, Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study, Mater. Res. Bull., 48, 3323, 10.1016/j.materresbull.2013.05.059

Zha, 2014, Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin, Chem. Eng. J., 255, 141, 10.1016/j.cej.2014.06.057

Zakharov, 2011, DFT-based thermodynamics of fenton reactions rejects the ‘pure’aquacomplex models, Comput. Theor. Chem., 964, 94, 10.1016/j.comptc.2010.12.004

Shukla, 2010, Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H 2 O 2, Chem. Eng. J., 164, 255, 10.1016/j.cej.2010.08.061

Zhou, 2015, Facile synthesis of paper mill sludge-derived heterogeneous catalyst for the Fenton-like degradation of methylene blue, Catal. Commun., 62, 71, 10.1016/j.catcom.2015.01.010

Xue, 2009, Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide, J. Hazard. Mater., 166, 407, 10.1016/j.jhazmat.2008.11.089