Structural characterization and functional correlation of Fe3O4 nanocrystals obtained using 2-ethyl-1,3-hexanediol as innovative reactive solvent in non-hydrolytic sol-gel synthesis
Tài liệu tham khảo
Jun, 2008, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences, Accounts Chem. Res., 41, 179, 10.1021/ar700121f
Alivisatos, 1997, Nanocrystals: building blocks for modern materials design, Endeavour, 21, 56, 10.1016/S0160-9327(97)01018-1
El-Sayed, 2004, Small is Different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals, Accounts Chem. Res., 37, 326, 10.1021/ar020204f
Jun, 2005, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging, J. Am. Chem. Soc., 127, 5732, 10.1021/ja0422155
Reddy, 2009, Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization, J. Colloid Interface Sci., 335, 34, 10.1016/j.jcis.2009.02.068
Park, 2001, Synthesis of “solid solution” and “Core-Shell” type Cobalt−Platinum magnetic nanoparticles via transmetalation reactions, J. Am. Chem. Soc., 123, 5743, 10.1021/ja0156340
Park, 2004, Characterization of superparamagnetic “Core−Shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys, J. Am. Chem. Soc., 126, 9072, 10.1021/ja049649k
Sun, 2000, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, 287, 1989, 10.1126/science.287.5460.1989
Reddy, 2007, Novel electrically conductive and ferromagnetic composites of poly(aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization, J. Appl. Polym. Sci., 106, 1181, 10.1002/app.26601
Barrera, 2017, Magnetite-epoxy nanocomposites obtained by the reactive suspension method: microstructural, thermo-mechanical and magnetic properties, Eur. Polym. J., 94, 354, 10.1016/j.eurpolymj.2017.07.022
Reddy, 2008, Self-assembly and graft polymerization route to monodispersed core-shell composite nanoparticles: physical properties, J. Nanosci. Nanotechnol., 8, 5632, 10.1166/jnn.2008.209
Akbarzadeh, 2012, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett., 7, 10.1186/1556-276X-7-144
Fryxell, 2012
Hyeon, 2003, Chemical synthesis of magnetic nanoparticles, Chem. Commun., 927, 10.1039/b207789b
Posocco, 2016, Combined mesoscale/experimental study of selective placement of magnetic nanoparticles in diblock copolymer films via solvent vapor annealing, J. Phys. Colloid Chem., 120, 7403, 10.1021/acs.jpcc.6b01050
Latham, 2008, Controlling transport and chemical functionality of magnetic nanoparticles, Accounts Chem. Res., 41, 411, 10.1021/ar700183b
Lu, 2007, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46, 1222, 10.1002/anie.200602866
Laurent, 2008, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108, 2064, 10.1021/cr068445e
Niederberger, 2007, Nonaqueous sol–gel routes to metal oxide nanoparticles, Accounts Chem. Res., 40, 793, 10.1021/ar600035e
Niederberger, 2006, Nonaqueous synthesis of metal oxide nanoparticles:Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents, J. Sol. Gel Sci. Technol., 40, 259, 10.1007/s10971-006-6668-8
Sciancalepore, 2014, Microwave-assisted nonaqueous sol–gel synthesis of highly crystalline magnetite nanocrystals, Mater. Chem. Phys., 148, 117, 10.1016/j.matchemphys.2014.07.020
Pinna, 2004, Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing, Angew. Chem. Int. Ed., 43, 4345, 10.1002/anie.200460610
Niederberger, 2004, A general soft-chemistry route to perovskites and related materials: synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles, Angew. Chem. Int. Ed., 43, 2270, 10.1002/anie.200353300
Pinna, 2010, The “benzyl alcohol route”: an elegant approach towards doped and multimetal oxide nanocrystals, J. Sol. Gel Sci. Technol., 57, 323, 10.1007/s10971-009-2111-2
Sciancalepore, 2016, Non-hydrolytic sol–gel synthesis and reactive suspension method: an innovative approach to obtain magnetite–epoxy nanocomposite materials, J. Sol. Gel Sci. Technol., 1
Gubin, 2009
Panissod, 2003, 233
Bellotto, 1991, Quantitative x-ray diffraction Rietveld analysis of low temperature coal ashes, Mater. Sci. Forum, 79–82, 6
Gualtieri, 2000, Accuracy of XRPD QPA using the combined Rietveld-RIR method, J. Appl. Crystallogr., 33, 267, 10.1107/S002188989901643X
Gualtieri, 1995, Quantitative determination of chrysotile asbestos in bulk materials by combined Rietveld and RIR methods, Powder Diffr., 10, 269, 10.1017/S0885715600014962
Tobaldi, 2013, Phase composition, crystal structure and microstructure of silver and tungsten doped TiO2 nanopowders with tuneable photochromic behaviour, Acta Mater., 61, 5571, 10.1016/j.actamat.2013.05.041
Sciancalepore, 2015, Quantitative phase analysis and microstructure characterization of magnetite nanocrystals obtained by microwave assisted non-hydrolytic sol–gel synthesis, Mater. Char., 100, 88, 10.1016/j.matchar.2014.12.013
Scardi, 2002, Whole powder pattern modelling, Acta Crystallogr. A, 58, 190, 10.1107/S0108767301021298
Scardi, 2001, Diffraction line profiles from polydisperse crystalline systems, Acta Crystallogr. A, 57, 604, 10.1107/S0108767301008881
Scardi, 2010, WPPM: microstructural analysis beyond the Rietveld method, Mater. Sci. Forum, 651, 17, 10.4028/www.scientific.net/MSF.651.155
Sangermano, 2013, Photo-cured epoxy networks functionalized with Fe3O4 generated by non-hydrolytic sol–gel process, Macromol. Chem. Phys., 214, 508, 10.1002/macp.201200494
Pinna, 2005, Magnetite Nanocrystals: nonaqueous synthesis, characterization, and solubility, Chem. Mater., 17, 3044, 10.1021/cm050060+
Larson, 2004, 86
Toby, 2001, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr., 34, 210, 10.1107/S0021889801002242
Bosi, 2009, Crystal chemistry of the magnetite-ulvöspinel series, Am. Mineral., 94, 181, 10.2138/am.2009.3002
Blake, 1966, Refinement of the hematite structure, Am. Mineral., 51, 7
Wyckoff, 1963
Leoni, 2006, PM2K: a flexible program implementing whole powder pattern modelling, Z. Kristallogr. Suppl., 06, 5
Scardi, 1999, Fourier modelling of the anisotropic line broadening of X-ray diffraction profiles due to line and plane lattice defects, J. Appl. Crystallogr., 32, 671, 10.1107/S002188989900374X
Leonardi, 2015, Dislocation effects on the diffraction line profiles from nanocrystalline domains, Metall. Mater. Trans., 1
Xu, 2003, Comparison of sizing small particles using different technologies, Powder Technol., 132, 145, 10.1016/S0032-5910(03)00048-2
Haas, 1992, The morphology and size of nanostructured Cu, Pd and W generated by sputtering, Nanostruct. Mater., 1, 491, 10.1016/0965-9773(92)90082-9
Granqvist, 1976, Ultrafine metal particles, J. Appl. Phys., 47, 2200, 10.1063/1.322870
Jubb, 2010, Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition, ACS Appl. Mater. Interfac., 2, 2804, 10.1021/am1004943
Daou, 2006, Hydrothermal synthesis of monodisperse magnetite nanoparticles, Chem. Mater., 18, 4399, 10.1021/cm060805r
Frison, 2013, Magnetite–maghemite nanoparticles in the 5–15 nm range: correlating the core–shell composition and the surface structure to the magnetic properties. A total scattering study, Chem. Mater., 25, 4820, 10.1021/cm403360f
Lu, 2002, Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy, J. Colloid Interface Sci., 256, 41, 10.1006/jcis.2001.8112
Huang, 2011, Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd3+-Chelated mesoporous silica shells, ACS Nano, 5, 3905, 10.1021/nn200306g
Diehm, 2012, Size-Dependent lattice expansion in nanoparticles: reality or anomaly?, ChemPhysChem, 13, 2443, 10.1002/cphc.201200257
Fiorani, 2006
Turkevich, 1985, Colloidal gold. Part I, Gold Bull., 18, 86, 10.1007/BF03214690
Yin, 2005, Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature, 437, 664, 10.1038/nature04165
Bilecka, 2008, One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles, Chem. Commun., 886, 10.1039/B717334B
Daniela, 2007, Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols, J. Phys. Appl. Phys., 40, 5801, 10.1088/0022-3727/40/19/001
Chen, 1996, Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation, Phys. Rev. B, 54, 9288, 10.1103/PhysRevB.54.9288
Koksharov, 2009, 197
Cullity, 2011
Allia, 1999, Magnetic hysteresis in granular CuCo alloys, J. Appl. Phys., 85, 4343, 10.1063/1.370362
Allia, 2001, Granular Cu-Co alloys as interacting superparamagnets, Phys. Rev. B, 64, 144420, 10.1103/PhysRevB.64.144420
Coey, 1972, vol. 11, 229
Sciancalepore, 2015, Epoxy nanocomposites functionalized with in situ generated magnetite nanocrystals: microstructure, magnetic properties, interaction among magnetic particles, Polymer, 59, 278, 10.1016/j.polymer.2014.12.047
Allia, 2014, Fe-oxide Nanoparticles: a natural playground for testing the ISP model, J. Phys. Conf., 521, 012008, 10.1088/1742-6596/521/1/012008
Jiménez-Villacorta, 2008, Magnetic properties and interaction mechanisms of iron-based core–shell structures prepared by sputtering at low substrate temperatures, J. Phys. Condens. Matter, 20, 085216, 10.1088/0953-8984/20/8/085216
Mamiya, 2005, Extraction of blocking temperature distribution from zero-field-cooled and field-cooled magnetization curves, IEEE Trans. Magn., 41, 3394, 10.1109/TMAG.2005.855205
Knobel, 2008, Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems, J. Nanosci. Nanotechnol., 8, 2836, 10.1166/jnn.2008.15348
Yanes, 2010, Temperature dependence of the effective anisotropies in magnetic nanoparticles with Néel surface anisotropy, J. Phys. Appl. Phys., 43, 474009, 10.1088/0022-3727/43/47/474009
Abe, 1976, Magnetocrystalline anisotropy of low temperature phase of magnetite, J. Phys. Soc. Jpn., 41, 1894, 10.1143/JPSJ.41.1894
Saxena, 2017, Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications, J. Magn. Magn Mater., 429, 166, 10.1016/j.jmmm.2017.01.031
Chesnel, 2014, Particle size effects on the magnetic behaviour of 5 to 11 nm Fe3O4 nanoparticles coated with oleic acid, J. Phys. Conf., 521, 012004, 10.1088/1742-6596/521/1/012004
Orozco-Henao, 2016, Effects of nanostructure and dipolar interactions on magnetohyperthermia in iron oxide nanoparticles, J. Phys. Colloid Chem., 120, 12796, 10.1021/acs.jpcc.6b00900
Balaev, 2017, Superparamagnetic blocking of an ensemble of magnetite nanoparticles upon interparticle interactions, J. Magn. Magn Mater., 440, 199, 10.1016/j.jmmm.2016.12.046
Effenberger, 2016, The influence of 1,2-alkanediol on the crystallinity of magnetite nanoparticles, J. Magn. Magn Mater., 417, 49, 10.1016/j.jmmm.2016.05.028