Structural characteristics of endohedral metalofullerenes ranging from C66 to C84

New Carbon Materials - Tập 24 - Trang 289-300 - 2009
Bing-she XU1,2, Zhu-xia ZHANG1,2, Guang-huan LIU1,2, Xu-guang LIU1,3
1Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
2College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China

Tài liệu tham khảo

Fowler, 1995 Stevenson, 1999, Small-bandgap endohedral metallofullerenes in high yield and purity [J], Nature, 401, 55, 10.1038/43415 Akasaka, 1997, 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral [J], Angew Chem Int Ed Engl, 36, 1643, 10.1002/anie.199716431 Guo, 1992, Uranium stabilization of C28: a tetravalent fullerene [J], Science, 257, 1661, 10.1126/science.257.5077.1661 Alvarez, 1991, Lanthanum carbide (La2C80): a soluble dimetallofullerene [J], J Phys Chem, 95, 10561, 10.1021/j100179a014 Feng, 2005, Structural characterization of Y@C82 [J], Chem Phys Lett, 405, 274, 10.1016/j.cplett.2005.02.032 Akasaka, 2000, La@C82 anion. An unusually stable metallofullerenes [J], J Am Chem Soc, 122, 9316, 10.1021/ja001586s Maeda, 2004, Isolation and characterization of a carbene derivative of La@C82 [J], J Am Chem Soc, 126, 6858, 10.1021/ja0316115 Tsuchiya, 2005, 2D NMR characterization of the La@C82 anion [J], Angew Chem Int Ed, 44, 3282, 10.1002/anie.200500039 Wakahara, 2004, Characterization of Ce@C82 and its anion [J], J Am Chem Soc, 126, 4883, 10.1021/ja039865d Akasaka, 2002 Shinohara, 2000, Endohedral metallofullerenes [J], Rep Prog Phys, 63, 843, 10.1088/0034-4885/63/6/201 Suter, 2002, Scalable architecture for spin-based quantum computers with a single type of gate [J], Phys ReV A, 65, 052309, 10.1103/PhysRevA.65.052309 Bethune, 1993, Atoms in carbon cages: the structure and properties of endohedral fullerenes [J], Nature, 366, 123, 10.1038/366123a0 Hebard, 1991, Superconductivity at 18 K in potassium-doped C60 [J], Nature, 350, 600, 10.1038/350600a0 Bosi, 2003, Fullerene derivatives: an attractive tool for biological applications [J], Eur J Med Chem, 38, 913, 10.1016/j.ejmech.2003.09.005 Kato, 2003, Lanthanoid endohedral metallofullerenols for MRI contrast agents [J], J Am Chem Soc, 125, 4391, 10.1021/ja027555+ Dunsch, 2007, Metal nitride cluster fullerenes: their current state and future prospects [J], Small, 3, 1298, 10.1002/smll.200700036 Qing-Bo, 2007, Theoretical study on the structures, properties and spectroscopies of fullerene derivatives C66X4 (X = H, F, Cl) [J], Carbon, 45, 1821, 10.1016/j.carbon.2007.04.036 Wang, 2000, Materials science: C66 fullerene encaging a scandium dimer [J], Nature, 408, 426, 10.1038/35044195 Cai, 2008, Synthesis and characterization of a non-IPR fullerene derivative: Sc3N@C68[C(COOC2H5)2] [J], J Phys Chem C, 112, 19203, 10.1021/jp804791e Yang, 2006, A facile route to the non-IPR fullerene Sc3N@C68: synthesis, spectroscopic characterization, and density functional theory computations (IPR=isolated pentagon rule) [J], Chemistry, 12, 7856, 10.1002/chem.200600261 Olmstead, 2003, Sc3N@C68: folded pentalene coordination in an endohedral fullerene that does not obey the isolated pentagon rule [J], Angew Chem Int Ed, 42, 900, 10.1002/anie.200390237 Reveles, 2005, 13C NMR pattern of Sc3N@C68. Structural assignment of the first fullerene with adjacent pentagons [J], J Phys Chem A, 109, 7068, 10.1021/jp052062n Campanera, 2002, Bonding within the endohedral fullerenes Sc3N@C78 and Sc3N@C80 as determined by density functional calculations and reexamination of the crystal structure of {Sc3N@C78}·Co(OEP){·1.5(C6H6)·0.3(CHCl3) [J], J Phys Chem A, 106, 12356, 10.1021/jp021882m Yang, 2007, The spin state of a charged non-IPR fullerene: the stable radical cation of Sc3N@C68 [J], Chem Commun, 189, 10.1039/B610550E Shi, 2006, Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage [J], Angew Chem Int Ed, 45, 2107, 10.1002/anie.200503705 Campanera, 2005, General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates [J], Angew Chem Int Ed, 117, 7396, 10.1002/ange.200501791 Saunders, 1994, Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70 [J], Nature, 367, 256, 10.1038/367256a0 Saunders, 1994, Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure [J], J Am Chem Soc, 116, 2193, 10.1021/ja00084a089 Dietel, 1999, Atomic nitrogen encapsulated in fullerenes: effects of cage variations [J], J Am Chem Soc, 121, 2432, 10.1021/ja983812s Lips, 2000, Atomic Nitrogen Encapsulated in Fullerenes: Proof of an Ideal Chemical Faraday Cage [J], Mol Mater, 13, 217 Yang, 2007, Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70 [J], Angew Chem Int Ed, 46, 1256, 10.1002/anie.200603281 Liu, 1996, High yield synthesis and extraction of La@C2n [J], Solid State Commun, 97, 407, 10.1016/0038-1098(95)00587-0 Wan, 1998, Production, isolation, and electronic properties of missing fullerenes: Ca@C72 and Ca@C74 [J], J Am Chem Soc, 120, 6806, 10.1021/ja972478h Slanina, 2006, La2@C72 and Sc2@C72: computational characterizations [J], J Phys Chem A, 110, 2231, 10.1021/jp055894u Stevenson, 1998, La2@C72: metal-mediated stabilization of a carbon cage [J], J Phys Chem A, 102, 2833, 10.1021/jp980452m Dunsch, 2001, New metallofullerenes in the size gap of C70 to C82 -From La2@C72 to Sc3N@C80 [J], Synth Met, 121, 1113, 10.1016/S0379-6779(00)00891-2 Kodama, 2004, 13C NMR study of Ca@C74: the cage structure and the site-hopping motion of a Ca atom inside the cage [J], Chem Phys Lett, 399, 94, 10.1016/j.cplett.2004.08.146 Okazaki, 2000, Isolation and spectroscopic characterization of Sm-containing metallofullerenes [J], Chem Phys Lett, 320, 435, 10.1016/S0009-2614(00)00274-8 Sun, 2004, Synthesis and characterization of Eu-metallofullerenes from Eu@C74 to Eu@C90 and their nanopeapods [J], J Phys Chem B, 108, 9011, 10.1021/jp049130a Stevenson, 1994, Automated HPLC separation of endohedral metallofullerene Sc@C2n and Y@C2n fractions [J], Anal Chem, 66, 2675, 10.1021/ac00089a013 Slanina, 2003, Ca@C72 IPR and non-IPR structures: computed temperature development of their relative concentrations [J], Chem Phys Lett, 372, 810, 10.1016/S0009-2614(03)00519-0 Kobayashi, 1997, Endohedral metallofullerenes are the isolated pentagon rule and Fullerene structures always satisfied? [J], J Am Chem Soc, 119, 12693, 10.1021/ja9733088 Kato, 2003, Structure of a missing-caged metallofullerene: La2@C72 [J], J Am Chem Soc, 125, 7782, 10.1021/ja0353255 Karin, 2006, Synthesis, isolation and characterization of new endohedral fullerenes M@C72 (M = Eu, Sr, Yb) [J], Phys Stat Sol. (b), 243, 3025, 10.1002/pssb.200669110 Karin, 2007, Isolation and spectroscopic characterization of Eu@C72. Fuller [J], Nanotub Car N, 15, 29, 10.1080/15363830600811961 Chi, 2008, Geometric and electronic structures of new, endohedral fullerenes: Eu@C72 [J], J Mol Model, 14, 465, 10.1007/s00894-008-0304-1 Haufe, 2005, Isolation and spectroscopic characterisation of new endohedral fullerenes in the size gap of C74 to C76[J], Anorg Allg Chem, 631, 126, 10.1002/zaac.200400342 Reich, 2004, The structure of Ba@C74 [J], J Am Chem Soc, 126, 14428, 10.1021/ja0401693 Chai, 1991, Fullerenes with metals inside [J], J Phys Chem, 95, 7564, 10.1021/j100173a002 Tang, 2007, Influence of a dichlophenyl group on the geometric structure, electronic properties, and static linear polarizability of La@C74 [J], Phys Rev A, 76, 013201, 10.1103/PhysRevA.76.013201 Nikawa, 2005, Missing Metallofullerene La@C74 [J], J Am Chem Soc, 127, 9684, 10.1021/ja0524806 Tagmatarchis, 2001, Mono-, di- and trierbium endohedral metallofullerenes: production, separation, isolation, and spectroscopic study [J], Chem Mater, 13, 2374, 10.1021/cm000955g Kuran, 1998, Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene [J], Chem Phys Lett, 292, 580, 10.1016/S0009-2614(98)00746-5 Matsuoka, 2004, Multifrequency EPR study of metallofullerenes: Eu@C82 and Eu@C74 [J], J Phys Chem B, 108, 13972, 10.1021/jp031350l Xu, 2004, Synthesis, isolation, and spectroscopic characterization of ytterbium-containing metallofullerenes [J], Chem Mater, 16, 2959, 10.1021/cm049639i Slanina, 2006, Computed structures of two known Yb@C74 isomers [J], J Phys Chem A, 110, 12860, 10.1021/jp062730k Zhang, 1992, Structures of large fullerenes: C60 to C94 [J], Chem Phys Lett, 193, 225, 10.1016/0009-2614(92)85659-X Bühl, 1995, Computational evidence for a new C84 isomer [J], Chem Phys Lett, 247, 63, 10.1016/0009-2614(95)01193-6 Osawa, 1998, Combined topological and energy analysis of the annealing process in fullerene formation. Stone–Wales interconversion pathways among IPR isomers of higher fullerenes [J], J Chem Soc, Perkin Trans, 2, 943, 10.1039/a706423c Sun, 2000, Theoretical 13C NMR Spectra of IPR Isomers of Fullerenes C60, C70, C72, C74, C76, and C78 Studied by Density Functional Theory [J], J Phys Chem A, 104, 7398, 10.1021/jp001272r Cai, 2007, Sc3N@C78: encapsulated cluster regiocontrol of adduct docking on an ellipsoidal metallofullerene sphere [J], J Am Chem Soc, 129, 10795, 10.1021/ja072345o Krause, 2005, Expanding the world of endohedral fullerenes – the Tm3N@C2n (39≤n≤43) clusterfullerene family [J], Chem Eur J, 11, 706, 10.1002/chem.200400673 Yang, 2005, A Large family of dysprosium-based trimetallic nitride endohedral fullerenes: Dy3N@C2n (39≤n≤44) [J], J Phys Chem B, 109, 12320, 10.1021/jp051597d Yumura, 2005, Which do endohedral Ti2C80 metallofullerenes prefer energetically: Ti2@C80 or Ti2C2@C78? a theoretical study [J], J Phys Chem B, 109, 20251, 10.1021/jp0519767 Hennrich, 1996, Isolation and characterization of C80 [J], Angew Chem Int Ed Engl, 35, 1732, 10.1002/anie.199617321 Wang, 2000, Production and isolation of an ellipsoidal C80 fullerene [J], Chem Commun, 557, 10.1039/b000387p Iiduka, 2005, Chemical reactivity of Sc3N@C80 and La2@C80 [J], J Am Chem Soc, 127, 9956, 10.1021/ja052534b Kobayashi, 2001, Theoretical study of endohedral metallofullerenes: Sc3-nLanN@C80 (n=0–3) [J], J Comput Chem, 22, 1353, 10.1002/jcc.1093 Dunsch, 2004, Endohedral nitride cluster fullerenes: Formation and spectroscopic analysis of L3-xMxN@C2n (0≤x≤3; N=39,40) [J], J Phys Chem Solids, 65, 309, 10.1016/j.jpcs.2003.03.002 Dunsch, 2006, The recent state of endohedral fullerene research [J], Electrochem Soc Interface, 15, 34, 10.1149/2.F05062IF Yang, 2006, Expanding the number of stable isomeric structures of the C80 cage: a new fullerene Dy3N@C80 [J], Chem Eur J, 12, 413, 10.1002/chem.200500383 Cai, 2006, Structure and enhanced reactivity rates of the D5h Sc3N@C80 and Lu3N@C80 metallofullerene isomers: the importance of the pyracylene motif [J], J Am Chem Soc, 128, 8581, 10.1021/ja0615573 Krause, 2004, Isolation and characterisation of two Sc3N@C80 isomers [J], Chem Phys Chem, 5, 1445, 10.1002/cphc.200400085 Sato, 2007, Structures of D5d-C80 and Ih-Er3N@C80 fullerenes and their rotation inside carbon nanotubes demonstrated by aberration-corrected electron microscopy [J], Nano Lett, 7, 3704, 10.1021/nl0720152 Krause, 2005, Gadolinium nitride Gd3N in carbon cages: the influence of cluster size and bond strength [J], Angew Chem Int Ed, 44, 1557, 10.1002/anie.200461441 Shiozawa, 2005, Electronic structure of the trimetal nitride fullerene Dy3N@C80 [J], Phys Rev B, 72, 195409, 10.1103/PhysRevB.72.195409 Olmstead, 2000, Isolation and crystallographic characterization of ErSc2N@C80: an endohedral fullerene which crystallizes with remarkable internal order [J], J Am Chem Soc, 122, 12220, 10.1021/ja001984v Chen, 2006, C80 encaging four different atoms: the synthesis, isolation, and characterizations of ScYErN@C80 [J], J Phys Chem B, 110, 13322, 10.1021/jp062982l Wang, 2006, Preparation and structure of CeSc2N@C80: an icosahedral carbon cage enclosing an acentric CeSc2N unit with buried f electron spin [J], J Am Chem Soc, 128, 8884, 10.1021/ja061434i Tan, 2006, Unprecedented μ4-C26− Anion in Sc4C2@C80 [J], J Phys Chem B, 110, 11098, 10.1021/jp0623995 Huang, 2000, Magnetic properties of heavy rare-earth metallofullerenes M@C82 (M=Gd, Tb, Dy, Ho, and Er) [J], J Phys Chem B, 104, 1473, 10.1021/jp9933166 Kobayashi, 1998, Structures and electronic states of M@C82 (M=Sc, Y, La and lanthanides) [J], Chem Phys Lett, 282, 325, 10.1016/S0009-2614(97)01328-6 Nishibori, 1998, Determination of the cage structure of Sc@C82 by synchrotron powder diffraction [J], Chem Phys Lett, 298, 79, 10.1016/S0009-2614(98)01133-6 Wakahara, 2002, Ionization and structural determination of the major isomer of Pr@C82 [J], Chem Phys Lett, 360, 235, 10.1016/S0009-2614(02)00844-8 Akasaka, 2008, Does Gd@C82 have an anomalous endohedral structure? synthesis and single crystal x-ray structure of the carbene adduct [J], J Am Chem Soc, 130, 12840, 10.1021/ja802156n Inoue, 2004, Trapping a C2 radical in endohedral metallofullerenes: synthesis and structures of (Y2C2)@C82 (isomers I, II, and III) [J], J Phys Chem B, 108, 7573, 10.1021/jp049865f Wang, 2000, A new method for separating the isomeric C84 fullerenes [J], J Am Chem Soc, 122, 3216, 10.1021/ja994270x Dennis, 1998, Isolation and characterisation of the two major isomers of [84]fullerene (C84) [J], Chem Commun, 619, 10.1039/a708025e Tagmatarchis, 2001, A catalytic synthesis and structural characterization of a new [84] fullerene isomer [J], Chem Commun, 1366, 10.1039/b103679n Cao, 2002, Production, isolation, and EELS characterization of Ti2@C84 dititanium metallofullerenes [J], J Phys Chem B, 106, 9295, 10.1021/jp026013b Inakuma, 2000, Structural and electronic properties of isomers of Sc2@C84(I, II, III): 13C NMR and IR/Raman spectroscopic studies [J], J Phys Chem B, 104, 5072, 10.1021/jp000438l Tagmatarchis, 2000, Isolation and spectroscopic study of a series of mono-and dierbium endohedral C82 and C84 metallofullerenes [J], J Phys Chem B, 104, 11010, 10.1021/jp001498u Wu, 2006, Geometric and electronic properties of Sc2C2@C84 [J], J Phys Condens Matter, 18, 7115, 10.1088/0953-8984/18/31/006 Beavers, 2006, Tb3N@C84: An improbable, egg-shaped endohedral fullerene that violates the isolated pentagon rule [J], J Am Chem Soc, 35, 11352, 10.1021/ja063636k Zhang, 2008, What is stable structure about Tb3N@C84? IPR or IPR-violating [J], J Mol Struct (THEOCHEM), 857, 1, 10.1016/j.theochem.2008.01.028