Structural building principles of complex face-centered cubic intermetallics

International Union of Crystallography (IUCr) - Tập 67 Số 4 - Trang 269-292 - 2011
Julia Dshemuchadse1, Daniel Y. Jung1, Walter Steurer1
1Laboratory of Crystallography , Department of Materials , ETH Zürich , Wolfgang-Pauli-Strasse 10, 8093, Zürich, Switzerland

Tóm tắt

Fundamental structural building principles are discussed for all 56 known intermetallic phases with approximately 400 or more atoms per unit cell and space-group symmetry F\bar{4}3m, Fd\bar{3}m, Fd\bar{3}, Fm\bar{3}m or Fm\bar{3}c. Despite fundamental differences in chemical composition, bonding and electronic band structure, their complex crystal structures show striking similarities indicating common building principles. We demonstrate that the structure-determining elements are flat and puckered atomic {110} layers stacked with periodicities 2p. The atoms on this set of layers, which intersect each other, form pentagon face-sharing endohedral fullerene-like clusters arranged in a face-centered cubic packing (f.c.c.). Due to their topological layer structure, all these crystal structures can be described as (p × p × p) = p 3-fold superstructures of a common basic structure of the double-diamond type. The parameter p, with p = 3, 4, 7 or 11, is determined by the number of layers per repeat unit and the type of cluster packing, which in turn are controlled by chemical composition.

Từ khóa


Tài liệu tham khảo

Alvarez, 2005, Dalton Trans., 13, 2209, 10.1039/b503582c

Alvarez, 2006, Dalton Trans., 17, 2045, 10.1039/B601681B

Andersson, 1980, Acta Cryst. B, 36, 2513, 10.1107/S0567740880009326

Arnberg, 1976, Acta Chem. Scand. A, 30, 187, 10.3891/acta.chem.scand.30a-0187

Bader, R. F. W. (1990). Atoms in Molecules - A Quantum Theory. Oxford University Press.

Becke, 1990, J. Chem. Phys., 92, 5397, 10.1063/1.458517

Belsky, 2002, Acta Cryst. B, 58, 364, 10.1107/S0108768102006948

Berger, 2008, Chem. Eur. J., 14, 3908, 10.1002/chem.200701396

Blase, 1991, Z. Anorg. Allg. Chem., 606, 79, 10.1002/zaac.19916060108

Blöchl, 1994, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953

Bonhomme, 1995, J. Alloys Compd., 227, L1, 10.1016/0925-8388(95)01673-2

Booth, 1977, Acta Cryst. B, 33, 30, 10.1107/S0567740877002556

Brunner, 1971, Z. Kristallogr., 133, 127, 10.1524/zkri.1971.133.133.127

Chabot, 1980, Acta Cryst. B, 36, 2202, 10.1107/S0567740880008394

Chahine, 1995, Z. Kristallogr., 210, 80, 10.1524/zkri.1995.210.1.80

Conrad, 2009, Acta Cryst. B, 65, 318, 10.1107/S0108768109014013

Cordier, 1993, Z. Kristallogr., 205, 353, 10.1524/zkri.1993.205.Part-2.353

Cordier, 1993, Z. Kristallogr., 205, 133, 10.1524/zkri.1993.205.Part-1.133

Cundy, H. M. & Rollett, A. P. (1961). Mathematical Models. Oxford University Press.

Escudero, 1999, J. Phys. Condens. Matter, 11, 383, 10.1088/0953-8984/11/2/006

Feuerbacher, 2007, Z. Kristallogr., 222, 259, 10.1524/zkri.2007.222.6.259

Fornasini, 1978, Acta Cryst. B, 34, 2093, 10.1107/S0567740878007505

Fornasini, 1986, Acta Cryst. C, 42, 138, 10.1107/S0108270186097019

Fredrickson, 2007, Angew. Chem. Int. Ed., 46, 1958, 10.1002/anie.200601678

Friedel, 1988, Helv. Phys. Acta, 61, 538

Fujiwara, 1994, Mater. Sci. Eng. A, 179, 118, 10.1016/0921-5093(94)90176-7

Fujiwara, 1991, Phys. Rev. Lett., 66, 333, 10.1103/PhysRevLett.66.333

Gómez, 2004, Chem. Eur. J., 10, 3279, 10.1002/chem.200305463

Goward, 2001, J. Alloys Compd., 329, 82, 10.1016/S0925-8388(01)01567-5

Gribanov, 1993, J. Alloys Compd., 202, 133, 10.1016/0925-8388(93)90531-Q

He, 2010, J. Alloys Compd., 491, 49, 10.1016/j.jallcom.2009.10.254

He, 2007, Powder Diffr., 22, 312, 10.1154/1.2793073

Hellner, 1987, Z. Kristallogr., 179, 175, 10.1524/zkri.1987.179.1-4.175

Henkelman, 2006, Comput. Mater. Sci., 36, 354, 10.1016/j.commatsci.2005.04.010

Henley, 2006, Philos. Mag., 86, 1131, 10.1080/14786430500419395

Hillebrecht, 1997, Z. Kristallogr., 212, 840, 10.1524/zkri.1997.212.12.840

Hippert, 1999, J. Phys. Condens. Matter, 11, 10419, 10.1088/0953-8984/11/50/331

Hornfeck, 2004, Chem. Eur. J., 10, 4616, 10.1002/chem.200400059

Johansson, 1970, Acta Chem. Scand., 24, 3471, 10.3891/acta.chem.scand.24-3471

Koster, 1981, Acta Cryst. B, 37, 1905, 10.1107/S056774088100753X

Kreiner, 1997, J. Alloys Compd., 259, 83, 10.1016/S0925-8388(96)03108-8

Kresse, 1996, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

Kresse, 1996, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

Laissardière, 1997, Phys. Rev. B, 55, 2890, 10.1103/PhysRevB.55.2890

Laissardière, 1995, Phys. Rev. B, 52, 7920, 10.1103/PhysRevB.52.7920

Lee, 2007, Angew. Chem., 119, 2004, 10.1002/ange.200601678

Lidin, 1994, Acta Cryst. C, 50, 340, 10.1107/S0108270193008650

Lin, 2005, Inorg. Chem., 44, 512, 10.1021/ic040075u

Mahne, 1994, J. Alloys Compd., 203, 271, 10.1016/0925-8388(94)90746-3

Mizutani, U. (2011). Hume-Rothery Rules for Structurally Complex Alloy Phases. Boca Raton: CRC Press.

Monkhorst, 1976, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188

Nasch, 1999, J. Solid State Chem., 143, 95, 10.1006/jssc.1998.8091

Pavlyuk, 2008, Acta Cryst. C, 64, i50, 10.1107/S0108270108015862

Pavlyuk, 2007, Intermetallics, 15, 1409, 10.1016/j.intermet.2007.04.014

Pecharskii, 1987, Sov. Phys. Crystallogr., 32, 194

Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Salamakha, 2001, J. Alloys Compd., 314, 177, 10.1016/S0925-8388(00)01212-3

Samson, 1962, Nature, 195, 259, 10.1038/195259a0

Samson, 1964, Acta Cryst., 17, 491, 10.1107/S0365110X64001189

Samson, 1965, Acta Cryst., 19, 401, 10.1107/S0365110X65005133

Samson, 1967, Acta Cryst., 23, 586, 10.1107/S0365110X67003251

Samson, 1972, Acta Cryst. B, 28, 936, 10.1107/S0567740872003437

Samson, 1972, Acta Cryst. B, 28, 930, 10.1107/S0567740872003425

Sikora, 2008, J. Phys. Condens. Matter, 104, 012023

Silvi, 1994, Nature, 371, 683, 10.1038/371683a0

Smetana, 2006, Z. Anorg. Allg. Chem., 2115, 10.1002/zaac.200670077

Smith, 1987, Phys. Rev. Lett., 59, 1365, 10.1103/PhysRevLett.59.1365

Steurer, 2006, Philos. Mag., 86, 1105, 10.1080/14786430500419387

Stojanovic, 2007, J. Solid State Chem., 180, 907, 10.1016/j.jssc.2006.12.022

Sugiyama, 2002, J. Alloys Compd., 342, 148, 10.1016/S0925-8388(02)00161-5

Thimmaiah, 2010, Chem. Eur. J., 16, 5461, 10.1002/chem.200903300

Thimmaiah, 2003, Solid State Sci., 5, 1309, 10.1016/S1293-2558(03)00178-X

Tillard-Charbonnel, 1992, Mater. Res. Bull., 27, 1277, 10.1016/0025-5408(92)90092-E

Tillard-Charbonnel, 1993, Z. Kristallogr., 208, 372, 10.1524/zkri.1993.208.Part-2.372

Tursina, 2005, Acta Cryst. E, 61, i99, 10.1107/S1600536805013048

Weber, 2009, Acta Cryst. B, 65, 308, 10.1107/S0108768109014001

Westin, 1971, Acta Chem. Scand., 25, 1480, 10.3891/acta.chem.scand.25-1480

Westin, 1972, Acta Chem. Scand., 26, 3619, 10.3891/acta.chem.scand.26-3619

Westin, 1973, Chem. Scr., 3, 15

Wolny, 2008, Philos. Mag. Lett., 88, 501, 10.1080/09500830802251419

Xiong, 2010, Inorg. Chem., 49, 10788, 10.1021/ic101804m

Yang, 1987, Acta Cryst. B, 43, 14, 10.1107/S0108768187098379