Structural breaks and volatility forecasting in the copper futures market
Tóm tắt
Từ khóa
Tài liệu tham khảo
Asai M., 2012, Asymmetry and long memory in volatility modeling, Journal of Business & Economic Statistics, 10, 495
Barndorff‐Nielse O. E., 2004, Power and bipower variation with stochastic volatility and jumps, Journal of Financial Econometrics, 2, 1, 10.1093/jjfinec/nbh001
Barndorff‐Nielsen O. E. Kinnebrock S. &Shephard N.(2010). Measuring downside risk—Realised semivariance. Working Paper.
Dai Z., 2016, Worse‐case conditional value‐at‐risk for asymmetrically distributed asset scenarios returns, Journal of Computational Analysis & Applications, 20, 237
Gong X., 2014, Forecasting return volatility of the CSI 300 index using the stochastic volatility model with continuous volatility and jumps, Discrete Dynamics in Nature and Society
Huang C., 2013, Measuring and forecasting volatility in chinese stock market using HAR‐CJ‐M model, Abstract and Applied Analysis, 2013, 1
Jiang Y., 2015, Do intraday data contain more information for volatility forecasting? Evidence from the Chinese commodity futures market, Applied Economics Letters, 22, 218, 10.1080/13504851.2014.934425
Müller U. A. Dacorogna M. M. Dave R. D. Pictet O. V. Olsen R. B. &Ward J. R.(1993). Fractals and intrinsic time‐a challenge to econometricians.International AEA Conference on Real Time Econometrics. Retrieved fromhttps://ssrn.com/abstract=5370