Structural breaks and volatility forecasting in the copper futures market

Journal of Futures Markets - Tập 38 Số 3 - Trang 290-339 - 2018
Xu Gong1, Boqiang Lin1
1School of Management, China Institute for Studies in Energy Policy, Collaborative Innovation Center for Energy Economics and Energy Policy, Xiamen University, Xiamen, Fujian, P. R. China

Tóm tắt

This paper examines whether structural breaks contain incremental information for forecasting the volatility of copper futures. Considering structural breaks in volatility, we develop four heterogeneous autoregressive (HAR) models based on classical or latest HAR‐type models. Subsequently, we apply these models to forecast volatility in the copper futures market. The empirical results reveal that our models exhibit better in‐sample and out‐of‐sample performances than classical or latest HAR‐type models. This suggests that structural breaks contain incremental prediction information for the volatility of copper futures. More importantly, we argue that considering structural breaks can improve the performances of most of existing HAR‐type models.Highlights There are many structural break points in return volatility of the copper futures. We propose 12 new heterogeneous autoregressive models. Our models outperform the existing heterogeneous autoregressive models. Structural breaks contain additional ex ante information for volatility forecasting. The ex ante information is obvious in forecasting mid‐ and long‐term volatilities.

Từ khóa


Tài liệu tham khảo

10.1016/j.jfineco.2015.02.009

10.1111/1468-0262.00418

10.1162/rest.89.4.701

10.1016/j.jeconom.2010.03.029

10.2307/2527343

10.1016/j.jeconom.2016.04.012

10.1016/j.ejor.2011.05.055

10.1016/j.qref.2012.04.004

Asai M., 2012, Asymmetry and long memory in volatility modeling, Journal of Business & Economic Statistics, 10, 495

10.3390/econometrics4010008

10.1002/jae.659

10.1016/j.najef.2013.02.020

Barndorff‐Nielse O. E., 2004, Power and bipower variation with stochastic volatility and jumps, Journal of Financial Econometrics, 2, 1, 10.1093/jjfinec/nbh001

10.1093/jjfinec/nbi022

Barndorff‐Nielsen O. E. Kinnebrock S. &Shephard N.(2010). Measuring downside risk—Realised semivariance. Working Paper.

10.1016/j.ejor.2015.12.010

10.1080/07350015.2015.1037882

10.1002/fut.21666

10.1016/j.jeconom.2015.10.007

10.1016/j.ijforecast.2016.05.001

10.1016/j.econmod.2013.09.038

10.1093/rfs/hhq071

10.1093/jjfinec/nbp001

10.1016/j.jeconom.2010.07.008

10.1080/07350015.2012.663261

Dai Z., 2016, Worse‐case conditional value‐at‐risk for asymmetrically distributed asset scenarios returns, Journal of Computational Analysis & Applications, 20, 237

10.2307/1392185

10.1016/j.jeconom.2015.02.042

10.1016/j.ijforecast.2015.11.017

10.1016/j.ijforecast.2015.07.003

Gong X., 2014, Forecasting return volatility of the CSI 300 index using the stochastic volatility model with continuous volatility and jumps, Discrete Dynamics in Nature and Society

10.1016/j.apenergy.2016.11.112

10.1198/073500105000000063

10.3982/ECTA5771

10.1016/j.jbankfin.2014.05.026

10.1002/fut.21696

Huang C., 2013, Measuring and forecasting volatility in chinese stock market using HAR‐CJ‐M model, Abstract and Applied Analysis, 2013, 1

10.1093/jjfinec/nbi025

10.2307/2290916

Jiang Y., 2015, Do intraday data contain more information for volatility forecasting? Evidence from the Chinese commodity futures market, Applied Economics Letters, 22, 218, 10.1080/13504851.2014.934425

10.1002/fut.21783

10.1002/fut.20459

10.1162/REST_a_00533

10.1002/fut.21792

10.1016/j.jeconom.2012.08.004

10.1016/j.resourpol.2015.09.009

10.1016/j.jeconom.2015.02.008

10.1016/j.frl.2015.08.005

10.1016/j.iref.2015.11.005

Müller U. A. Dacorogna M. M. Dave R. D. Pictet O. V. Olsen R. B. &Ward J. R.(1993). Fractals and intrinsic time‐a challenge to econometricians.International AEA Conference on Real Time Econometrics. Retrieved fromhttps://ssrn.com/abstract=5370

10.1016/j.jempfin.2014.10.003

10.1016/j.jempfin.2014.07.002

10.1162/REST_a_00503

10.1093/jjfinec/nbw004

10.1002/fut.21759

10.1016/j.ijforecast.2016.05.004

10.1016/j.ejor.2014.01.019

10.1016/j.econmod.2015.07.005

10.1016/j.resourpol.2013.10.008

10.1016/j.jspi.2007.03.057

10.1016/j.jeconom.2013.04.006

10.1016/j.ijforecast.2014.10.007

10.1016/j.jbankfin.2015.12.010

10.1016/j.ijforecast.2015.02.006

10.1016/j.matcom.2008.01.015

10.1016/j.eneco.2016.07.014