Structural and optical study of nanostructuredSe 80 − x Te 20 Sb x (0 ≤ x ≤ 12 ) thin films
Tài liệu tham khảo
Kafashan, 2017, Electrochemical synthesis of nanostructured Se-doped SnS: effect of Se dopant on surface characterization, Appl. Surf. Sci., 410, 186, 10.1016/j.apsusc.2017.03.062
Vo, 2016, A Simple synthesis of Ag2+xSe nanoparticles and their thin films for electronic device applications, Korean J. Chem. Eng., 33, 305, 10.1007/s11814-015-0141-8
Ali, 2016, Advances in Nanostructured thin film materials for solar cell applications, Renewable Sustainable Energy Rev., 59, 726, 10.1016/j.rser.2015.12.268
Tanaka, 2003, Nanostructure chalcogenide glasses, J. Non-Cryst. Solids, 326–327, 21, 10.1016/S0022-3093(03)00371-5
Alvi, 2013, Synthesis and characterization of nanoparticle thin films of a- (PbSe)100−xCdx lead chalcogenides, Nanoscale Res. Lett., 8, 148, 10.1186/1556-276X-8-148
Salah, 2013, Synthesis and characterization of thin films of Te94Se6 nanoparticles for semiconducting and optical devices, Thin Solid Films, 531, 70, 10.1016/j.tsf.2012.12.021
Klym, 2015, Cold crystallization in nanostructurized 80GeSe2 −20Ga2Se3 glass, Nanoscale Res. Lett., 10, 49, 10.1186/s11671-015-0775-9
Siddiqui, 2014, Band gap engineering by substitution of S by Se in nanostructured CdS1−xSex thin films grown by soft chemical route for photosensor application, Mater. Sci. Semicond. Process., 27, 404, 10.1016/j.mssp.2014.07.014
Darwish, 2014, AC electrical conductivity and dielectric studies on evaporated nanostructured InSe thin films, J. Alloys Compd., 586, 142, 10.1016/j.jallcom.2013.10.054
Darwish, 2014, Photoinduced effect in nanostructured InSe thin films for photonic applications, Opt. Commun., 310, 104, 10.1016/j.optcom.2013.07.064
Yavsin, 2014, Nanostructured Ge2Sb2Te5 chalcogenide films produced by laser electrodispersion, Semiconductors, 48, 1567, 10.1134/S1063782614120239
Tripathi, 2009, Optical properties of selenium–tellurium nanostructured thin film grown by thermal evaporation, Physica B, 404, 2134, 10.1016/j.physb.2009.03.049
Khan, 2010, Effect of composition on electrical and optical properties of thin films of amorphous GaxSe100−x nanorods, Nanoscale Res. Lett., 5, 1512, 10.1007/s11671-010-9671-5
Salah, 2012, Direct bandgap materials based on the thin films of SexTe100−x nanoparticles, Nanoscale Res. Lett., 7, 509, 10.1186/1556-276X-7-509
Khan, 2011, Electrical properties of thin films of a- GaxTe100−x composed of nanoparticles, Phil. Mag. Lett., 9, 207, 10.1080/09500839.2010.547227
Khan, 2011, Morphology and optical properties of thin films of GaxSe100−x nanoparticles, Nanosci. Nanotechnol. Lett., 3, 319, 10.1166/nnl.2011.1188
Khan, 2009, Electrical and optical properties of thin film of a- Se70Te30 nanorods, J. Alloys Compd., 486, 774, 10.1016/j.jallcom.2009.07.049
Salah, 2012, Synthesis and characterization of Se35Te65−xGex nanoparticle films and their optical properties, J. Nanomater., 201, 393084
Khan, 2010, Structural, optical and electrical properties of cadmium doped lead chalcogenide (PbSe) thin films, Physica B, 405, 3384, 10.1016/j.physb.2010.05.009
Nasir, 2013, Effect of sulfur additive on density of localized states in nanostructures chalcogenide Se95−xSxZn5 thin films, J. Phys. Chem. Solids, 74, 1527, 10.1016/j.jpcs.2013.05.018
Alvi, 2016, Synthesis and characterization of nano-structured Se77Sb15Ge8 thin films, Optik, 127, 9420, 10.1016/j.ijleo.2016.07.037
Tanweer Ashraf, 2016, Optical studies on Zn-doped lead chalcogenide (PbSe)100−xZnx thin films composed of nanoparticles, Thin Solid Films, 612, 109, 10.1016/j.tsf.2016.05.054
Alvi, 2014, Synthesis and characterization of Bi doped Se–Te nanostructured thin films, Measurement, 58, 325, 10.1016/j.measurement.2014.08.046
Saraswat, 2006, Electrical measurements of Se85−xTe15Sbx glasses, Indian J. Pure Appl. Phys., 44, 782
Sharma, 2014, Photolelectrical properties of semiconduction amorphous Se–Te–Sb thin films, J. Ovonic Res., 10, 7
Shaaban, 2015, Compositional variation and thermal annealing effect on optical properties of Se–Te–Sb semiconductor thin films, Opto-Electron. Adv. Mater.-Rapid Commun., 9, 587
Deepika, 2016, Role of Sb substitution on electrical properties of Se–Te glasses, Indian J. Sci. Technol., 9, 1
Saraswat, 2008, I-V measurements of Se–Te–Sb glassy bulk and thin film samples, Chalcogenide Lett., 5, 95
Fadel, 2011, Electrical and switching properties of Se85Te15−xSbx (0≤x≤6 at.wt%) thin films, J. Alloys Compd., 509, 7663, 10.1016/j.jallcom.2011.04.093
Soltan, 2013, The activation energy and fragility index of the glass transition in Se76Te21Sb3 chalcogenide glass, Thermochim. Acta, 574, 73, 10.1016/j.tca.2013.09.020
Vanitha, 2013, Physical ageing in Se–Te–Sb glasses, J. Phys. Chem. Solids, 74, 804, 10.1016/j.jpcs.2013.01.010
Swanepoel, 1983, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E: Sci. Instrum., 16, 1214, 10.1088/0022-3735/16/12/023
Kotb, 2015, The influence of the substitution of Se for Sn on the thermal, optical and dispersion properties of Ge14Se86−xSnx thin films, Mater. Sci. Semicond. Process., 38, 209, 10.1016/j.mssp.2015.04.032
Tauc, 1974
Mott, 1979
Majeed Khan, 2003, Electrical transport properties of amorphous Se78 −x Te22Bix films, J. Mater. Sci., 38, 549, 10.1023/A:1021841708012
Urbach, 1953, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev., 92, 1324, 10.1103/PhysRev.92.1324