Structural and optical characterization of nanometer sized MoS2/graphene heterostructures for potential use in optoelectronic devices
Tài liệu tham khảo
Mak, 2016, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, 10, 216, 10.1038/nphoton.2015.282
Jariwala, 2014, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8, 1102, 10.1021/nn500064s
Fiori, 2014, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768, 10.1038/nnano.2014.207
Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193
Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279
Koppens, 2014, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol., 9, 780, 10.1038/nnano.2014.215
Liu, 2019, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode, Nano-Micro Lett., 11, 1, 10.1049/mnl.2015.0108
Huang, 2015, Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials, ACS Nano, 9, 10612, 10.1021/acsnano.5b04258
Froehlicher, 2018, Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der waals heterostructures, Phys. Rev. X, 8
Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589
Bosi, 2015, Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review, RSC Adv., 5, 75500, 10.1039/C5RA09356B
Vishwanath, 2018, Challenges and opportunities in molecular beam epitaxy growth of 2D crystals: an overview, Mol. Beam Epitaxy, 443, 10.1016/B978-0-12-812136-8.00017-7
Walsh, 2018, Molecular beam epitaxy of transition metal dichalcogenides, Mol. Beam Epitaxy, 515, 10.1016/B978-0-12-812136-8.00024-4
Hall, 2018, Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study, 2D Mater., 5, 025005, 10.1088/2053-1583/aaa1c5
Pielić, 2021, Electronic structure of quasi-freestanding WS2/MoS2 heterostructures, ACS Appl. Mater. Interfaces, 13, 50552, 10.1021/acsami.1c15412
Zhang, 2014, Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2, Nat. Nanotechnol., 9, 111, 10.1038/nnano.2013.277
Ugeda, 2014, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater., 13, 1091, 10.1038/nmat4061
Nakano, 2017, Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy, Nano Lett., 17, 5595, 10.1021/acs.nanolett.7b02420
Ohtake, 2021, Two-dimensional WSe2/MoSe2 heterostructures grown by molecular-beam epitaxy, J. Phys. Chem. C, 125, 11257, 10.1021/acs.jpcc.1c02780
Lasek, 2021, Synthesis and characterization of 2D transition metal dichalcogenides: recent progress from a vacuum surface science perspective, Surf. Sci. Rep., 76, 100523, 10.1016/j.surfrep.2021.100523
Gao, 2021, Graphene/MoS2/graphene vertical heterostructure-based broadband photodetector with high performance, Adv. Mater. Interfaces, 8, 2001730, 10.1002/admi.202001730
Nalwa, 2020, A review of molybdenum disulfide (MoS2) based photodetectors: from ultra-broadband, self-powered to flexible devices, RSC Adv., 10, 30529, 10.1039/D0RA03183F
Liu, 2019, High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions, J. Alloy. Compd., 779, 140, 10.1016/j.jallcom.2018.11.165
Gong, 2021, Layer-scale and chip-scale transfer techniques for functional devices and systems: a review, Nanomaterials, 11, 842, 10.3390/nano11040842
Chen, 2012, Nanopores in GaN by electrochemical anodization in hydrofluoric acid: formation and mechanism, J. Appl. Phys., 112, 064303, 10.1063/1.4752259
Hwang, 2016, Photoelectrochemical liftoff of LEDs grown on freestanding c-plane GaN substrates, Opt. Express, 24, 22875, 10.1364/OE.24.022875
Cao, 2017, Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers, Nanoscale, 9, 11504, 10.1039/C7NR03622A
Kelly, 1999, Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff, Jpn J. Appl. Phys., Part 2: Lett., 38, L217, 10.1143/JJAP.38.L217
Mikulics, 2020, Laser micro annealing conditioning for the suppression of statistical scatter in freestanding Sb2Te3 nanowire resistance, FlatChem., 21, 10.1016/j.flatc.2020.100164
Mikulics, 2020, Fully photon operated transmistor / all-optical switch based on a layered Ge1Sb2Te4 phase change medium, FlatChem., 23, 10.1016/j.flatc.2020.100186
Dross, 2007, Stress-induced large-area lift-off of crystalline Si films, Appl. Phys. A, 89, 149, 10.1007/s00339-007-4195-2
Bedell, 2012, Kerf-less removal of Si, Ge, and III-V layers by controlled spalling to enable low-cost PV technologies, IEEE J. Photovoltaics, 2, 141, 10.1109/JPHOTOV.2012.2184267
Shahrjerdi, 2012, High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology, Appl. Phys. Lett., 100, 053901, 10.1063/1.3681397
Fu, 2017, Electrocatalytic radical dichlorination of alkenes with nucleophilic chlorine sources, J Am Chem Soc., 139, 15548, 10.1021/jacs.7b09388
N. Ehlen, J. Hall, B. v. Senkovskiy, M. Hell, J. Li, A. Herman, D. Smirnov, A. Fedorov, V. Yu Voroshnin, G. di Santo, L. Petaccia, T. Michely, A. Grüneis, Narrow photoluminescence and Raman peaks of epitaxial MoS2 on graphene/Ir(1 1 1), 2D Materials. 6 (2019). https://doi.org/10.1088/2053-1583/aaebd3.
Wang, 2011, Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst, ACS Nano, 5, 9927, 10.1021/nn203700w
Radatović, 2022, Macroscopic single-phase monolayer borophene on arbitrary substrates, ACS Appl. Mater. Interfaces, 14, 21727, 10.1021/acsami.2c03678
van Gastel, 2009, Selecting a single orientation for millimeter sized graphene sheets, Appl. Phys. Lett., 95, 121901, 10.1063/1.3225554
T N'Diaye, 2009, Growth of graphene on Ir(111), New J. Phys., 11, 023006, 10.1088/1367-2630/11/2/023006
Coraux, 2008, Structural coherency of graphene on Ir(111), Nano Lett., 8, 565, 10.1021/nl0728874
Horcas, 2007, WSXM: a software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78, 10.1063/1.2432410
Unlocking the Potential of Molecular Beam Epitaxy - EE Times Asia, (n.d.). https://www.eetasia.com/unlocking-the-potential-of-molecular-beam-epitaxy/ (accessed May 3, 2022).
Shibasaki, 2013, Mass production of sensors grown by MBE, Mol. Beam Epitaxy, 697, 10.1016/B978-0-12-387839-7.00031-2
W.P. Mccray, MBE deserves a place in the history books, (n.d.). www.nature.com/naturenanotechnology (accessed May 3, 2022).
Hattab, 2011, Growth temperature dependent graphene alignment on Ir(111), Appl. Phys. Lett., 98, 141903, 10.1063/1.3548546
Bollinger, 2001, One-dimensional metallic edge states in MoS2, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.196803
Sun, 2011, Topographic and electronic contrast of the graphene moiré on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy, Phys. Rev. B - Condensed Matter Mater. Phys., 83
Verguts, 2017, Controlling water intercalation is key to a direct graphene transfer, ACS Appl. Mater. Interfaces, 9, 37484, 10.1021/acsami.7b12573
Shearer, 2016, Accurate thickness measurement of graphene, Nanotechnology, 27, 125704, 10.1088/0957-4484/27/12/125704
Van der Waals epitaxy of two-dimensional transition metal disulphides | Repository of Faculty of Science, (n.d.). https://repozitorij.pmf.unizg.hr/en/islandora/object/pmf%3A10297 (accessed May 3, 2022).
Šrut Rakić, 2016, Step-induced faceting and related electronic effects for graphene on Ir(332), Carbon N. Y., 110, 267, 10.1016/j.carbon.2016.09.024
Kouroupis-Agalou, 2014, Fragmentation and exfoliation of 2-dimensional materials: a statistical approach, Nanoscale, 6, 5926, 10.1039/C3NR06919B
L. Antonio. Barraales Mora, 2D and 3D Grain Growth Modeling and Simulation. PhD Thesis, RWTH Aachen, (2008) 147.
Gao, 2012, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nat. Commun., 3, 10.1038/ncomms1702
Koefoed, 2015, Facile electrochemical transfer of large-area single crystal epitaxial graphene from Ir(1 1 1), J. Phys. D Appl. Phys., 48, 10.1088/0022-3727/48/11/115306
Paredes, 2017, Recent advances and energy-related applications of high quality/chemically doped graphenes obtained by electrochemical exfoliation methods, J. Mater. Chem. A, 5, 7228, 10.1039/C7TA01711A
Šrut Rakić, 2016, Large-scale transfer and characterization of macroscopic periodically nano-rippled graphene, Carbon N Y., 96, 243, 10.1016/j.carbon.2015.09.046
Guo, 2019, Low-temperature growth of large-scale, single-crystalline graphene on Ir(111)*, Chin. Phys. B, 28, 056107, 10.1088/1674-1056/28/5/056107
Wood, 2015, Annealing free, clean graphene transfer using alternative polymer scaffolds, Nanotechnology, 26, 055302, 10.1088/0957-4484/26/5/055302
Starodub, 2011, In-plane orientation effects on the electronic structure, stability, and Raman scattering of monolayer graphene on Ir(111), Phys. Rev. B – Condens. Matter Mater. Phys., 83, 10.1103/PhysRevB.83.125428
Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.136805
Zhu, 2011, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Phys. Rev. B – Condens. Matter Mater. Phys., 84, 10.1103/PhysRevB.84.153402
Yoffe, 1993, Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems, Adv. Phys., 42, 173, 10.1080/00018739300101484
Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w
Pierucci, 2016, Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures, Sci. Rep., 6, 10.1038/srep26656
Zhang, 2015, Ultrathin two-dimensional nanomaterials, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040
Fan, 2016, Valence band splitting on multilayer MoS2: mixing of spin-orbit coupling and interlayer coupling, J. Phys. Chem. Lett., 7, 2175, 10.1021/acs.jpclett.6b00693
Cheiwchanchamnangij, 2012, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B – Condens. Matter Mater. Phys., 85, 10.1103/PhysRevB.85.205302
Qiu, 2013, Optical spectrum of MoS2: many-body effects and diversity of exciton states, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.216805
Komsa, 2012, Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles, Phys. Rev. B – Condens. Matter Mater. Phys., 86, 10.1103/PhysRevB.86.241201
Wang, 2020, Tuning the binding energy of excitons in the MoS2monolayer by molecular functionalization and defective engineering, Phys. Chem. Chem. Phys., 22, 11936, 10.1039/D0CP01239D
Lin, 2019, Electron redistribution and energy transfer in graphene/MoS2 heterostructure, Appl. Phys. Lett., 114, 113103, 10.1063/1.5088512
Pham, 2019, MoS2-graphene heterostructures as efficient organic compounds sensing 2D materials, Carbon N Y., 142, 504, 10.1016/j.carbon.2018.10.079
Li, 2014, Photoluminescence of monolayer MoS2 on LaAlO3 and SrTiO3 substrates, Nanoscale, 6, 15248, 10.1039/C4NR04602A
Cao, 2019, Phonon modes and photonic excitation transitions of MoS2 induced by top-deposited graphene revealed by Raman spectroscopy and photoluminescence, Appl. Phys. Lett., 114, 133103, 10.1063/1.5083104
Niehues, 2018, Strain control of exciton-phonon coupling in atomically thin semiconductors, Nano Lett., 18, 1751, 10.1021/acs.nanolett.7b04868
Sercombe, 2013, Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates, Sci. Rep., 3, 10.1038/srep03489
Cadiz, 2017, Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures, Phys. Rev. X, 7
Moody, 2015, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun., 6, 10.1038/ncomms9315
Gonzalez Marin, 2019, MoS2 photodetectors integrated with photonic circuits, Npj 2D Mater, Appl, 3, 1
Migliato Marega, 2022, Low-power artificial neural network perceptron based on monolayer MoS2, ACS Nano, 16, 3684, 10.1021/acsnano.1c07065
Gammelgaard, 2014, Graphene transport properties upon exposure to PMMA processing and heat treatments, 2D Mater., 1, 10.1088/2053-1583/1/3/035005
Li, 2012, From bulk to monolayer MoS2: evolution of raman scattering, Adv. Funct. Mater., 22, 1385, 10.1002/adfm.201102111
Uchinokura, 1972, Raman scattering by silicon, Solid State Commun., 11, 47, 10.1016/0038-1098(72)91127-1
Lee, 2020, Photoinduced tuning of schottky barrier height in graphene/MoS2 heterojunction for ultrahigh performance short channel phototransistor, ACS Nano, 14, 7574, 10.1021/acsnano.0c03425
Najmaei, 2013, Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers, Nanoscale, 5, 9758, 10.1039/c3nr02567e
Mignuzzi, 2015, Effect of disorder on Raman scattering of single-layer MoS2, Phys. Rev. B – Condens. Matter Mater. Phys., 91, 10.1103/PhysRevB.91.195411
Srivastava, 2018, Temperature-dependent Raman linewidths in transition-metal dichalcogenides, Phys. Rev. B., 98, 10.1103/PhysRevB.98.035430
Najmaei, 2012, Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses, Appl. Phys. Lett., 100, 013106, 10.1063/1.3673907
Sarkar, 2020, Anharmonicity in Raman-active phonon modes in atomically thin MoS2, Phys. Rev. B., 101, 10.1103/PhysRevB.101.205302
Lee, 2020, Schottky barrier variable graphene/multilayer-MoS2 heterojunction transistor used to overcome short channel effects, ACS Appl. Mater. Interfaces, 12, 2854, 10.1021/acsami.9b18577
Lanzillo, 2013, Temperature-dependent phonon shifts in monolayer MoS2, Appl. Phys. Lett., 103, 093102, 10.1063/1.4819337
Thomsen, 2000, Double resonant raman scattering in graphite, Phys. Rev. Lett., 85, 5214, 10.1103/PhysRevLett.85.5214
Tuinstra, 1970, Raman spectrum of graphite, J. Chem. Phys., 53, 1126, 10.1063/1.1674108
Ferrari, 2000, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B., 61, 14095, 10.1103/PhysRevB.61.14095
Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon - NASA/ADS, (n.d.). https://ui.adsabs.harvard.edu/abs/1987OptSp..62..612B/abstract (accessed May 4, 2022).
Pócsik, 1998, Origin of the D peak in the Raman spectrum of microcrystalline graphite, J. Non-Cryst. Solids, 227–230, 1083, 10.1016/S0022-3093(98)00349-4
Lu, 2012, Decoupling of CVD graphene by controlled oxidation of recrystallized Cu, RSC Adv., 2, 3008, 10.1039/c2ra01281b
Nemanich, 1979, First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B., 20, 392, 10.1103/PhysRevB.20.392
Ferrari, 2007, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47, 10.1016/j.ssc.2007.03.052
Jorio, 2012, Raman spectroscopy in graphene-based systems: prototypes for nanoscience and nanometrology, ISRN Nanotechnol., 2012, 1, 10.5402/2012/234216
Ferrari, 2013, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol., 8, 235, 10.1038/nnano.2013.46
Ferrari, 2004, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci., 362, 2477, 10.1098/rsta.2004.1452
Eckmann, 2012, Probing the nature of defects in graphene by Raman spectroscopy, Nano Lett., 12, 3925, 10.1021/nl300901a
Li, 2015, Raman shift and electrical properties of MoS2 bilayer on boron nitride substrate, Nanotechnology, 26, 295702, 10.1088/0957-4484/26/29/295702
Grüneis, 2018, Ultrahigh Vacuum Optical Spectroscopy of Chemically Functionalized Graphene Nanoribbons, 367
Karamat, 2015, Oral, Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition, Prog. Nat. Sci.: Mater. Int., 25, 291, 10.1016/j.pnsc.2015.07.006
Ferrari, 2006, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.187401
Weatherup, 2012, Kinetic control of catalytic CVD for high-quality graphene at low temperatures, ACS Nano, 6, 9996, 10.1021/nn303674g
Gilbertson, 2012, Direct measurement of quasiparticle lifetimes in graphene using time-resolved photoemission, J. Vacuum Sci. Technol. B, Nanotechnol. Microelectron.: Mater. Process. Measure. Phenomena, 30, 03D116, 10.1116/1.4715440
Childres, 2011, Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements, New J. Phys., 13, 025008, 10.1088/1367-2630/13/2/025008
Zhang, 2015, Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Sci. Rep., 4
Chen, 2018, Scalable MoS2/graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications, Semicond. Sci. Technol., 33, 025007, 10.1088/1361-6641/aaa3b7
Xu, 2018, 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution, Appl. Catal. B, 220, 379, 10.1016/j.apcatb.2017.08.035
Liu, 2016, Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier, Sci. Adv., 2, 10.1126/sciadv.1600069
Kappera, 2014, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors, Nat. Mater., 13, 1128, 10.1038/nmat4080
Murray, 2020, Band bending and valence band quantization at line defects in MoS2, ACS Nano, 14, 9176, 10.1021/acsnano.0c04945
van Efferen, 2022, Metal-insulator transition in monolayer MoS 2 via contactless chemical doping, 2D Materials, 9, 025026, 10.1088/2053-1583/ac5d0f
Ouyang, 2022, Double-edged roles of intrinsic defects in two-dimensional MoS2, Trends Chem., 4, 451, 10.1016/j.trechm.2022.02.006