Structural and optical characterization of nanometer sized MoS2/graphene heterostructures for potential use in optoelectronic devices

FlatChem - Tập 34 - Trang 100397 - 2022
V. Jadriško1, B. Radatović1, B. Pielić1, C. Gadermaier2, M. Kralj1, N. Vujičić1
1Center of Excellence for Advanced Materials and Sensing Devices and Center for Advanced Laser Techniques, Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia
2Politecnico di Milano, Physics Department, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Tài liệu tham khảo

Mak, 2016, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics, 10, 216, 10.1038/nphoton.2015.282 Jariwala, 2014, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides, ACS Nano, 8, 1102, 10.1021/nn500064s Fiori, 2014, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768, 10.1038/nnano.2014.207 Wang, 2012, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol., 7, 699, 10.1038/nnano.2012.193 Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279 Koppens, 2014, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol., 9, 780, 10.1038/nnano.2014.215 Liu, 2019, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode, Nano-Micro Lett., 11, 1, 10.1049/mnl.2015.0108 Huang, 2015, Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials, ACS Nano, 9, 10612, 10.1021/acsnano.5b04258 Froehlicher, 2018, Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der waals heterostructures, Phys. Rev. X, 8 Chhowalla, 2013, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem., 5, 263, 10.1038/nchem.1589 Bosi, 2015, Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review, RSC Adv., 5, 75500, 10.1039/C5RA09356B Vishwanath, 2018, Challenges and opportunities in molecular beam epitaxy growth of 2D crystals: an overview, Mol. Beam Epitaxy, 443, 10.1016/B978-0-12-812136-8.00017-7 Walsh, 2018, Molecular beam epitaxy of transition metal dichalcogenides, Mol. Beam Epitaxy, 515, 10.1016/B978-0-12-812136-8.00024-4 Hall, 2018, Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study, 2D Mater., 5, 025005, 10.1088/2053-1583/aaa1c5 Pielić, 2021, Electronic structure of quasi-freestanding WS2/MoS2 heterostructures, ACS Appl. Mater. Interfaces, 13, 50552, 10.1021/acsami.1c15412 Zhang, 2014, Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2, Nat. Nanotechnol., 9, 111, 10.1038/nnano.2013.277 Ugeda, 2014, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater., 13, 1091, 10.1038/nmat4061 Nakano, 2017, Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy, Nano Lett., 17, 5595, 10.1021/acs.nanolett.7b02420 Ohtake, 2021, Two-dimensional WSe2/MoSe2 heterostructures grown by molecular-beam epitaxy, J. Phys. Chem. C, 125, 11257, 10.1021/acs.jpcc.1c02780 Lasek, 2021, Synthesis and characterization of 2D transition metal dichalcogenides: recent progress from a vacuum surface science perspective, Surf. Sci. Rep., 76, 100523, 10.1016/j.surfrep.2021.100523 Gao, 2021, Graphene/MoS2/graphene vertical heterostructure-based broadband photodetector with high performance, Adv. Mater. Interfaces, 8, 2001730, 10.1002/admi.202001730 Nalwa, 2020, A review of molybdenum disulfide (MoS2) based photodetectors: from ultra-broadband, self-powered to flexible devices, RSC Adv., 10, 30529, 10.1039/D0RA03183F Liu, 2019, High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions, J. Alloy. Compd., 779, 140, 10.1016/j.jallcom.2018.11.165 Gong, 2021, Layer-scale and chip-scale transfer techniques for functional devices and systems: a review, Nanomaterials, 11, 842, 10.3390/nano11040842 Chen, 2012, Nanopores in GaN by electrochemical anodization in hydrofluoric acid: formation and mechanism, J. Appl. Phys., 112, 064303, 10.1063/1.4752259 Hwang, 2016, Photoelectrochemical liftoff of LEDs grown on freestanding c-plane GaN substrates, Opt. Express, 24, 22875, 10.1364/OE.24.022875 Cao, 2017, Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers, Nanoscale, 9, 11504, 10.1039/C7NR03622A Kelly, 1999, Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff, Jpn J. Appl. Phys., Part 2: Lett., 38, L217, 10.1143/JJAP.38.L217 Mikulics, 2020, Laser micro annealing conditioning for the suppression of statistical scatter in freestanding Sb2Te3 nanowire resistance, FlatChem., 21, 10.1016/j.flatc.2020.100164 Mikulics, 2020, Fully photon operated transmistor / all-optical switch based on a layered Ge1Sb2Te4 phase change medium, FlatChem., 23, 10.1016/j.flatc.2020.100186 Dross, 2007, Stress-induced large-area lift-off of crystalline Si films, Appl. Phys. A, 89, 149, 10.1007/s00339-007-4195-2 Bedell, 2012, Kerf-less removal of Si, Ge, and III-V layers by controlled spalling to enable low-cost PV technologies, IEEE J. Photovoltaics, 2, 141, 10.1109/JPHOTOV.2012.2184267 Shahrjerdi, 2012, High-efficiency thin-film InGaP/InGaAs/Ge tandem solar cells enabled by controlled spalling technology, Appl. Phys. Lett., 100, 053901, 10.1063/1.3681397 Fu, 2017, Electrocatalytic radical dichlorination of alkenes with nucleophilic chlorine sources, J Am Chem Soc., 139, 15548, 10.1021/jacs.7b09388 N. Ehlen, J. Hall, B. v. Senkovskiy, M. Hell, J. Li, A. Herman, D. Smirnov, A. Fedorov, V. Yu Voroshnin, G. di Santo, L. Petaccia, T. Michely, A. Grüneis, Narrow photoluminescence and Raman peaks of epitaxial MoS2 on graphene/Ir(1 1 1), 2D Materials. 6 (2019). https://doi.org/10.1088/2053-1583/aaebd3. Wang, 2011, Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst, ACS Nano, 5, 9927, 10.1021/nn203700w Radatović, 2022, Macroscopic single-phase monolayer borophene on arbitrary substrates, ACS Appl. Mater. Interfaces, 14, 21727, 10.1021/acsami.2c03678 van Gastel, 2009, Selecting a single orientation for millimeter sized graphene sheets, Appl. Phys. Lett., 95, 121901, 10.1063/1.3225554 T N'Diaye, 2009, Growth of graphene on Ir(111), New J. Phys., 11, 023006, 10.1088/1367-2630/11/2/023006 Coraux, 2008, Structural coherency of graphene on Ir(111), Nano Lett., 8, 565, 10.1021/nl0728874 Horcas, 2007, WSXM: a software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum., 78, 10.1063/1.2432410 Unlocking the Potential of Molecular Beam Epitaxy - EE Times Asia, (n.d.). https://www.eetasia.com/unlocking-the-potential-of-molecular-beam-epitaxy/ (accessed May 3, 2022). Shibasaki, 2013, Mass production of sensors grown by MBE, Mol. Beam Epitaxy, 697, 10.1016/B978-0-12-387839-7.00031-2 W.P. Mccray, MBE deserves a place in the history books, (n.d.). www.nature.com/naturenanotechnology (accessed May 3, 2022). Hattab, 2011, Growth temperature dependent graphene alignment on Ir(111), Appl. Phys. Lett., 98, 141903, 10.1063/1.3548546 Bollinger, 2001, One-dimensional metallic edge states in MoS2, Phys. Rev. Lett., 87, 10.1103/PhysRevLett.87.196803 Sun, 2011, Topographic and electronic contrast of the graphene moiré on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy, Phys. Rev. B - Condensed Matter Mater. Phys., 83 Verguts, 2017, Controlling water intercalation is key to a direct graphene transfer, ACS Appl. Mater. Interfaces, 9, 37484, 10.1021/acsami.7b12573 Shearer, 2016, Accurate thickness measurement of graphene, Nanotechnology, 27, 125704, 10.1088/0957-4484/27/12/125704 Van der Waals epitaxy of two-dimensional transition metal disulphides | Repository of Faculty of Science, (n.d.). https://repozitorij.pmf.unizg.hr/en/islandora/object/pmf%3A10297 (accessed May 3, 2022). Šrut Rakić, 2016, Step-induced faceting and related electronic effects for graphene on Ir(332), Carbon N. Y., 110, 267, 10.1016/j.carbon.2016.09.024 Kouroupis-Agalou, 2014, Fragmentation and exfoliation of 2-dimensional materials: a statistical approach, Nanoscale, 6, 5926, 10.1039/C3NR06919B L. Antonio. Barraales Mora, 2D and 3D Grain Growth Modeling and Simulation. PhD Thesis, RWTH Aachen, (2008) 147. Gao, 2012, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nat. Commun., 3, 10.1038/ncomms1702 Koefoed, 2015, Facile electrochemical transfer of large-area single crystal epitaxial graphene from Ir(1 1 1), J. Phys. D Appl. Phys., 48, 10.1088/0022-3727/48/11/115306 Paredes, 2017, Recent advances and energy-related applications of high quality/chemically doped graphenes obtained by electrochemical exfoliation methods, J. Mater. Chem. A, 5, 7228, 10.1039/C7TA01711A Šrut Rakić, 2016, Large-scale transfer and characterization of macroscopic periodically nano-rippled graphene, Carbon N Y., 96, 243, 10.1016/j.carbon.2015.09.046 Guo, 2019, Low-temperature growth of large-scale, single-crystalline graphene on Ir(111)*, Chin. Phys. B, 28, 056107, 10.1088/1674-1056/28/5/056107 Wood, 2015, Annealing free, clean graphene transfer using alternative polymer scaffolds, Nanotechnology, 26, 055302, 10.1088/0957-4484/26/5/055302 Starodub, 2011, In-plane orientation effects on the electronic structure, stability, and Raman scattering of monolayer graphene on Ir(111), Phys. Rev. B – Condens. Matter Mater. Phys., 83, 10.1103/PhysRevB.83.125428 Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.136805 Zhu, 2011, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors, Phys. Rev. B – Condens. Matter Mater. Phys., 84, 10.1103/PhysRevB.84.153402 Yoffe, 1993, Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems, Adv. Phys., 42, 173, 10.1080/00018739300101484 Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w Pierucci, 2016, Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures, Sci. Rep., 6, 10.1038/srep26656 Zhang, 2015, Ultrathin two-dimensional nanomaterials, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040 Fan, 2016, Valence band splitting on multilayer MoS2: mixing of spin-orbit coupling and interlayer coupling, J. Phys. Chem. Lett., 7, 2175, 10.1021/acs.jpclett.6b00693 Cheiwchanchamnangij, 2012, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B – Condens. Matter Mater. Phys., 85, 10.1103/PhysRevB.85.205302 Qiu, 2013, Optical spectrum of MoS2: many-body effects and diversity of exciton states, Phys. Rev. Lett., 111, 10.1103/PhysRevLett.111.216805 Komsa, 2012, Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles, Phys. Rev. B – Condens. Matter Mater. Phys., 86, 10.1103/PhysRevB.86.241201 Wang, 2020, Tuning the binding energy of excitons in the MoS2monolayer by molecular functionalization and defective engineering, Phys. Chem. Chem. Phys., 22, 11936, 10.1039/D0CP01239D Lin, 2019, Electron redistribution and energy transfer in graphene/MoS2 heterostructure, Appl. Phys. Lett., 114, 113103, 10.1063/1.5088512 Pham, 2019, MoS2-graphene heterostructures as efficient organic compounds sensing 2D materials, Carbon N Y., 142, 504, 10.1016/j.carbon.2018.10.079 Li, 2014, Photoluminescence of monolayer MoS2 on LaAlO3 and SrTiO3 substrates, Nanoscale, 6, 15248, 10.1039/C4NR04602A Cao, 2019, Phonon modes and photonic excitation transitions of MoS2 induced by top-deposited graphene revealed by Raman spectroscopy and photoluminescence, Appl. Phys. Lett., 114, 133103, 10.1063/1.5083104 Niehues, 2018, Strain control of exciton-phonon coupling in atomically thin semiconductors, Nano Lett., 18, 1751, 10.1021/acs.nanolett.7b04868 Sercombe, 2013, Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates, Sci. Rep., 3, 10.1038/srep03489 Cadiz, 2017, Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures, Phys. Rev. X, 7 Moody, 2015, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun., 6, 10.1038/ncomms9315 Gonzalez Marin, 2019, MoS2 photodetectors integrated with photonic circuits, Npj 2D Mater, Appl, 3, 1 Migliato Marega, 2022, Low-power artificial neural network perceptron based on monolayer MoS2, ACS Nano, 16, 3684, 10.1021/acsnano.1c07065 Gammelgaard, 2014, Graphene transport properties upon exposure to PMMA processing and heat treatments, 2D Mater., 1, 10.1088/2053-1583/1/3/035005 Li, 2012, From bulk to monolayer MoS2: evolution of raman scattering, Adv. Funct. Mater., 22, 1385, 10.1002/adfm.201102111 Uchinokura, 1972, Raman scattering by silicon, Solid State Commun., 11, 47, 10.1016/0038-1098(72)91127-1 Lee, 2020, Photoinduced tuning of schottky barrier height in graphene/MoS2 heterojunction for ultrahigh performance short channel phototransistor, ACS Nano, 14, 7574, 10.1021/acsnano.0c03425 Najmaei, 2013, Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers, Nanoscale, 5, 9758, 10.1039/c3nr02567e Mignuzzi, 2015, Effect of disorder on Raman scattering of single-layer MoS2, Phys. Rev. B – Condens. Matter Mater. Phys., 91, 10.1103/PhysRevB.91.195411 Srivastava, 2018, Temperature-dependent Raman linewidths in transition-metal dichalcogenides, Phys. Rev. B., 98, 10.1103/PhysRevB.98.035430 Najmaei, 2012, Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses, Appl. Phys. Lett., 100, 013106, 10.1063/1.3673907 Sarkar, 2020, Anharmonicity in Raman-active phonon modes in atomically thin MoS2, Phys. Rev. B., 101, 10.1103/PhysRevB.101.205302 Lee, 2020, Schottky barrier variable graphene/multilayer-MoS2 heterojunction transistor used to overcome short channel effects, ACS Appl. Mater. Interfaces, 12, 2854, 10.1021/acsami.9b18577 Lanzillo, 2013, Temperature-dependent phonon shifts in monolayer MoS2, Appl. Phys. Lett., 103, 093102, 10.1063/1.4819337 Thomsen, 2000, Double resonant raman scattering in graphite, Phys. Rev. Lett., 85, 5214, 10.1103/PhysRevLett.85.5214 Tuinstra, 1970, Raman spectrum of graphite, J. Chem. Phys., 53, 1126, 10.1063/1.1674108 Ferrari, 2000, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B., 61, 14095, 10.1103/PhysRevB.61.14095 Interpretation of certain characteristics in Raman spectra of graphite and glassy carbon - NASA/ADS, (n.d.). https://ui.adsabs.harvard.edu/abs/1987OptSp..62..612B/abstract (accessed May 4, 2022). Pócsik, 1998, Origin of the D peak in the Raman spectrum of microcrystalline graphite, J. Non-Cryst. Solids, 227–230, 1083, 10.1016/S0022-3093(98)00349-4 Lu, 2012, Decoupling of CVD graphene by controlled oxidation of recrystallized Cu, RSC Adv., 2, 3008, 10.1039/c2ra01281b Nemanich, 1979, First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B., 20, 392, 10.1103/PhysRevB.20.392 Ferrari, 2007, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143, 47, 10.1016/j.ssc.2007.03.052 Jorio, 2012, Raman spectroscopy in graphene-based systems: prototypes for nanoscience and nanometrology, ISRN Nanotechnol., 2012, 1, 10.5402/2012/234216 Ferrari, 2013, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol., 8, 235, 10.1038/nnano.2013.46 Ferrari, 2004, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci., 362, 2477, 10.1098/rsta.2004.1452 Eckmann, 2012, Probing the nature of defects in graphene by Raman spectroscopy, Nano Lett., 12, 3925, 10.1021/nl300901a Li, 2015, Raman shift and electrical properties of MoS2 bilayer on boron nitride substrate, Nanotechnology, 26, 295702, 10.1088/0957-4484/26/29/295702 Grüneis, 2018, Ultrahigh Vacuum Optical Spectroscopy of Chemically Functionalized Graphene Nanoribbons, 367 Karamat, 2015, Oral, Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition, Prog. Nat. Sci.: Mater. Int., 25, 291, 10.1016/j.pnsc.2015.07.006 Ferrari, 2006, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.187401 Weatherup, 2012, Kinetic control of catalytic CVD for high-quality graphene at low temperatures, ACS Nano, 6, 9996, 10.1021/nn303674g Gilbertson, 2012, Direct measurement of quasiparticle lifetimes in graphene using time-resolved photoemission, J. Vacuum Sci. Technol. B, Nanotechnol. Microelectron.: Mater. Process. Measure. Phenomena, 30, 03D116, 10.1116/1.4715440 Childres, 2011, Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements, New J. Phys., 13, 025008, 10.1088/1367-2630/13/2/025008 Zhang, 2015, Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Sci. Rep., 4 Chen, 2018, Scalable MoS2/graphene hetero-structures grown epitaxially on sapphire substrates for phototransistor applications, Semicond. Sci. Technol., 33, 025007, 10.1088/1361-6641/aaa3b7 Xu, 2018, 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution, Appl. Catal. B, 220, 379, 10.1016/j.apcatb.2017.08.035 Liu, 2016, Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier, Sci. Adv., 2, 10.1126/sciadv.1600069 Kappera, 2014, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors, Nat. Mater., 13, 1128, 10.1038/nmat4080 Murray, 2020, Band bending and valence band quantization at line defects in MoS2, ACS Nano, 14, 9176, 10.1021/acsnano.0c04945 van Efferen, 2022, Metal-insulator transition in monolayer MoS 2 via contactless chemical doping, 2D Materials, 9, 025026, 10.1088/2053-1583/ac5d0f Ouyang, 2022, Double-edged roles of intrinsic defects in two-dimensional MoS2, Trends Chem., 4, 451, 10.1016/j.trechm.2022.02.006