Structural and functional studies of S-adenosyl-L-methionine binding proteins: a ligand-centric approach

Springer Science and Business Media LLC - Tập 13 - Trang 1-14 - 2013
Rajaram Gana1, Shruti Rao2, Hongzhan Huang2,3, Cathy Wu2,3, Sona Vasudevan2
1Department of Biostatistics and Bioinformatics, Georgetown University Medical Center, Washington, USA
2Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, USA
3University of Delaware, Newark, USA

Tóm tắt

The post-genomic era poses several challenges. The biggest is the identification of biochemical function for protein sequences and structures resulting from genomic initiatives. Most sequences lack a characterized function and are annotated as hypothetical or uncharacterized. While homology-based methods are useful, and work well for sequences with sequence identities above 50%, they fail for sequences in the twilight zone (<30%) of sequence identity. For cases where sequence methods fail, structural approaches are often used, based on the premise that structure preserves function for longer evolutionary time-frames than sequence alone. It is now clear that no single method can be used successfully for functional inference. Given the growing need for functional assignments, we describe here a systematic new approach, designated ligand-centric, which is primarily based on analysis of ligand-bound/unbound structures in the PDB. Results of applying our approach to S-adenosyl-L-methionine (SAM) binding proteins are presented. Our analysis included 1,224 structures that belong to 172 unique families of the Protein Information Resource Superfamily system. Our ligand-centric approach was divided into four levels: residue, protein/domain, ligand, and family levels. The residue level included the identification of conserved binding site residues based on structure-guided sequence alignments of representative members of a family, and the identification of conserved structural motifs. The protein/domain level included structural classification of proteins, Pfam domains, domain architectures, and protein topologies. The ligand level included ligand conformations, ribose sugar puckering, and the identification of conserved ligand-atom interactions. The family level included phylogenetic analysis. We found that SAM bound to a total of 18 different fold types (I-XVIII). We identified 4 new fold types and 11 additional topological arrangements of strands within the well-studied Rossmann fold Methyltransferases (MTases). This extends the existing structural classification of SAM binding proteins. A striking correlation between fold type and the conformation of the bound SAM (classified as types) was found across the 18 fold types. Several site-specific rules were created for the assignment of functional residues to families and proteins that do not have a bound SAM or a solved structure.

Tài liệu tham khảo

Casari G, Andrade MA, Bork P, Boyle J, Daruvar A, Ouzounis C, Schneider R, Tamames J, Valencia A, Sander C: Challenging times for bioinformatics. Nature 1995, 376(6542):647–648. 10.1038/376647a0 Blundell TL, Mizuguchi K: Structural genomics: an overview. Prog Biophys Mol Biol 2000, 73(5):289–295. 10.1016/S0079-6107(00)00008-0 Watson JD, Todd AE, Bray J, Laskowski RA, Edwards A, Joachimiak A, Orengo CA, Thornton JM: Target selection and determination of function in structural genomics. IUBMB Life 2003, 55(4–5):249–255. UniProt C: The universal protein resource (UniProt). Nucleic Acids Res 2008, 36: D190-D195. Database issue 10.1093/nar/gkn141 Catoni GL: S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J Biol Chem 1953, 204(1):403–416. Cantoni GL: Biological methylation: selected aspects. Annu Rev Biochem 1975, 44: 435–451. 10.1146/annurev.bi.44.070175.002251 Kouzarides T: Histone methylation in transcriptional control. Curr Opin Genet Dev 2002, 12(2):198–209. 10.1016/S0959-437X(02)00287-3 Aravind L, Koonin EV: Novel predicted RNA-binding domains associated with the translation machinery. J Mol Evol 1999, 48(3):291–302. 10.1007/PL00006472 Romano JD, Michaelis S: Topological and mutational analysis of Saccharomyces cerevisiae Ste14p, founding member of the isoprenylcysteine carboxyl methyltransferase family. Mol Biol Cell 2001, 12(7):1957–1971. Roje S: S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 2006, 67(15):1686–1698. 10.1016/j.phytochem.2006.04.019 Booker SJ, Cicchillo RM, Grove TL: Self-sacrifice in radical S-adenosylmethionine proteins. Curr Opin Chem Biol 2007, 11(5):543–552. 10.1016/j.cbpa.2007.08.028 Layer G, Heinz DW, Jahn D, Schubert WD: Structure and function of radical SAM enzymes. Curr Opin Chem Biol 2004, 8(5):468–476. 10.1016/j.cbpa.2004.08.001 Cadicamo CD, Courtieu J, Deng H, Meddour A, O'Hagan D: Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism. Chem Bio Chem 2004, 5(5):685–690. 10.1002/cbic.200300839 Gilbert SD, Montange RK, Stoddard CD, Batey RT: Structural studies of the purine and SAM binding riboswitches. Cold Spring Harb Symp Quant Biol 2006, 71: 259–268. 10.1101/sqb.2006.71.015 Montange RK, Batey RT: Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 2006, 441(7097):1172–1175. 10.1038/nature04819 Kozbial PZ, Mushegian AR: Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 2005, 5: 19. 10.1186/1472-6807-5-19 Misako K, Kouichi M: Caffeine synthase and related methyltransferases in plants. Front Biosci 2004, 9: 1833–1842. 10.2741/1364 Pradhan S, Esteve PO: Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin Immunol 2003, 109(1):6–16. 10.1016/S1521-6616(03)00204-3 Chaib H, Prebet T, Vey N, Collette Y: Histone methyltransferases: a new class of therapeutic targets in cancer treatment? Med Sci (Paris) 2011, 27(8–9):725–732. Wagner JM, Hackanson B, Lubbert M, Jung M: Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 2010, 1(3–4):117–136. Borroni B, Agosti C, Archetti S, Costanzi C, Bonomi S, Ghianda D, Lenzi GL, Caimi L, Di Luca M, Padovani A: Catechol-O-methyltransferase gene polymorphism is associated with risk of psychosis in Alzheimer Disease. Neurosci Lett 2004, 370(2–3):127–129. Item CB, Mercimek-Mahmutoglu S, Battini R, Edlinger-Horvat C, Stromberger C, Bodamer O, Muhl A, Vilaseca MA, Korall H, Stockler-Ipsiroglu S: Characterization of seven novel mutations in seven patients with GAMT deficiency. Hum Mutat 2004, 23(5):524. Bottiglieri T, Godfrey P, Flynn T, Carney MW, Toone BK, Reynolds EH: Cerebrospinal fluid S-adenosylmethionine in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine. J Neurol Neurosurg Psychiatry 1990, 53(12):1096–1098. 10.1136/jnnp.53.12.1096 Rosenbaum JF, Fava M, Falk WE, Pollack MH, Cohen LS, Cohen BM, Zubenko GS: The antidepressant potential of oral S-adenosyl-l-methionine. Acta Psychiatr Scand 1990, 81(5):432–436. 10.1111/j.1600-0447.1990.tb05476.x Bottiglieri T: Ademetionine (S-adenosylmethionine) neuropharmacology: implications for drug therapies in psychiatric and neurological disorders. Expert Opin Investig Drugs 1997, 6(4):417–426. 10.1517/13543784.6.4.417 Najm WI, Reinsch S, Hoehler F, Tobis JS, Harvey PW: S-adenosyl methionine (SAMe) versus celecoxib for the treatment of osteoarthritis symptoms: a double-blind cross-over trial. BMC Musculoskelet Disord 2004, 5: 6. ISRCTN36233495 10.1186/1471-2474-5-6 Zhu BT: CNS dopamine oxidation and catechol-O-methyltransferase: importance in the etiology, pharmacotherapy, and dietary prevention of Parkinson's disease. Int J Mol Med 2004, 13(3):343–353. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28(1):235–242. 10.1093/nar/28.1.235 Wu CH, Nikolskaya A, Huang H, Yeh LS, Natale DA, Vinayaka CR, Hu ZZ, Mazumder R, Kumar S, Kourtesis P: PIRSF: family classification system at the Protein Information Resource. Nucleic Acids Res 2004, 32: D112-D114. Database issue 10.1093/nar/gkh097 Vasudevan S, Vinayaka CR, Natale DA, Huang H, Kahsay RY, Wu CH: Structure-guided rule-based annotation of protein functional sites in UniProt knowledgebase. Methods Mol Biol 2011, 694: 91–105. 10.1007/978-1-60761-977-2_7 Laskowski RA: PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 2001, 29(1):221–222. 10.1093/nar/29.1.221 Eddy SR: Hidden Markov models. Curr Opin Struct Biol 1996, 6(3):361–365. 10.1016/S0959-440X(96)80056-X Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH: Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 2000, 25(6):300–302. 10.1016/S0968-0004(00)01561-9 Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG: SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 2004, 32: D226-D229. Database issue 10.1093/nar/gkh039 Gough J, Chothia C: SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res 2002, 30(1):268–272. 10.1093/nar/30.1.268 Sun G, Voigt JH, Marquez VE, Nicklaus MC: Prosit, an online service to calculate pseudorotational parameters of nucleosides and nucleotides. Nucleosides Nucleotides Nucleic Acids 2005, 24(5–7):1029–1032. Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K: Using VMD: an introductory tutorial. Curr Protoc Bioinformatics 2008, 5: 5–7. Schubert HL, Blumenthal RM, Cheng X: Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 2003, 28(6):329–335. 10.1016/S0968-0004(03)00090-2 Korolev S, Ikeguchi Y, Skarina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A: The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Biol 2002, 9(1):27–31. 10.1038/nsb737 Jansson A, Koskiniemi H, Erola A, Wang J, Mantsala P, Schneider G, Niemi J: Aclacinomycin 10-hydroxylase is a novel substrate-assisted hydroxylase requiring S-adenosyl-L-methionine as cofactor. J Biol Chem 2005, 280(5):3636–3644. Dong A, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng X: Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res 2001, 29(2):439–448. 10.1093/nar/29.2.439 McCulloch V, Shadel GS: Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol Cell Biol 2003, 23(16):5816–5824. 10.1128/MCB.23.16.5816-5824.2003 Bujnicki JM: In silico analysis of the tRNA: m1A58 methyltransferase family: homology-based fold prediction and identification of new members from Eubacteria and Archaea. FEBS Lett 2001, 507(2):123–127. 10.1016/S0014-5793(01)02962-3 Bujnicki JM: Sequence permutations in the molecular evolution of DNA methyltransferases. BMC Evol Biol 2002, 2: 3. 10.1186/1471-2148-2-3 Martin JL, McMillan FM: SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 2002, 12(6):783–793. 10.1016/S0959-440X(02)00391-3 Babor M, Sobolev V, Edelman M: Conserved positions for ribose recognition: importance of water bridging interactions among ATP, ADP and FAD-protein complexes. J Mol Biol 2002, 323(3):523–532. 10.1016/S0022-2836(02)00975-0 Cheng X, Collins RE, Zhang X: Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 2005, 34: 267–294. 10.1146/annurev.biophys.34.040204.144452 Daniels DS, Tainer JA: Conserved structural motifs governing the stoichiometric repair of alkylated DNA by O(6)-alkylguanine-DNA alkyltransferase. Mutat Res 2000, 460(3–4):151–163. Timinskas A, Butkus V, Janulaitis A: Sequence motifs characteristic for DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene 1995, 157(1–2):3–11. Malone T, Blumenthal RM, Cheng X: Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 1995, 253(4):618–632. 10.1006/jmbi.1995.0577 Albalat R, Marti-Solans J, Canestro C: DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates. Brief Funct Genomics 2012, 11(2):142–155. 10.1093/bfgp/els009 Kuang D, Yao Y, Wang M, Pattabiraman N, Kotra LP, Hampson DR: Molecular similarities in the ligand binding pockets of an odorant receptor and the metabotropic glutamate receptors. J Biol Chem 2003, 278(43):42551–42559. 10.1074/jbc.M307120200 Schapira M: Structural Chemistry of Human SET Domain Protein Methyltransferases. Current chemical genomics 2011, 5(Suppl 1):85–94. Xie P, Tian CY, Zhang LQ, An LG, He FC: Progress in the study of histone methyltransferases. Yi chuan = Hereditas /Zhongguo yi chuan xue hui bian ji 2007, 29(9):1035–1041. 10.1360/yc-007-1035 Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y, Struhl K: Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 2002, 16(12):1518–1527. 10.1101/gad.1001502 Rodriguez V, Vasudevan S, Noma A, Carlson BA, Green JE, Suzuki T, Chandrasekharappa SC: Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW) base in phenylalanine-tRNA. PLoS One 2012, 7(6):e39297. 10.1371/journal.pone.0039297