Structural and functional studies of S-adenosyl-L-methionine binding proteins: a ligand-centric approach
Tóm tắt
The post-genomic era poses several challenges. The biggest is the identification of biochemical function for protein sequences and structures resulting from genomic initiatives. Most sequences lack a characterized function and are annotated as hypothetical or uncharacterized. While homology-based methods are useful, and work well for sequences with sequence identities above 50%, they fail for sequences in the twilight zone (<30%) of sequence identity. For cases where sequence methods fail, structural approaches are often used, based on the premise that structure preserves function for longer evolutionary time-frames than sequence alone. It is now clear that no single method can be used successfully for functional inference. Given the growing need for functional assignments, we describe here a systematic new approach, designated ligand-centric, which is primarily based on analysis of ligand-bound/unbound structures in the PDB. Results of applying our approach to S-adenosyl-L-methionine (SAM) binding proteins are presented. Our analysis included 1,224 structures that belong to 172 unique families of the Protein Information Resource Superfamily system. Our ligand-centric approach was divided into four levels: residue, protein/domain, ligand, and family levels. The residue level included the identification of conserved binding site residues based on structure-guided sequence alignments of representative members of a family, and the identification of conserved structural motifs. The protein/domain level included structural classification of proteins, Pfam domains, domain architectures, and protein topologies. The ligand level included ligand conformations, ribose sugar puckering, and the identification of conserved ligand-atom interactions. The family level included phylogenetic analysis. We found that SAM bound to a total of 18 different fold types (I-XVIII). We identified 4 new fold types and 11 additional topological arrangements of strands within the well-studied Rossmann fold Methyltransferases (MTases). This extends the existing structural classification of SAM binding proteins. A striking correlation between fold type and the conformation of the bound SAM (classified as types) was found across the 18 fold types. Several site-specific rules were created for the assignment of functional residues to families and proteins that do not have a bound SAM or a solved structure.
Tài liệu tham khảo
Casari G, Andrade MA, Bork P, Boyle J, Daruvar A, Ouzounis C, Schneider R, Tamames J, Valencia A, Sander C: Challenging times for bioinformatics. Nature 1995, 376(6542):647–648. 10.1038/376647a0
Blundell TL, Mizuguchi K: Structural genomics: an overview. Prog Biophys Mol Biol 2000, 73(5):289–295. 10.1016/S0079-6107(00)00008-0
Watson JD, Todd AE, Bray J, Laskowski RA, Edwards A, Joachimiak A, Orengo CA, Thornton JM: Target selection and determination of function in structural genomics. IUBMB Life 2003, 55(4–5):249–255.
UniProt C: The universal protein resource (UniProt). Nucleic Acids Res 2008, 36: D190-D195. Database issue 10.1093/nar/gkn141
Catoni GL: S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J Biol Chem 1953, 204(1):403–416.
Cantoni GL: Biological methylation: selected aspects. Annu Rev Biochem 1975, 44: 435–451. 10.1146/annurev.bi.44.070175.002251
Kouzarides T: Histone methylation in transcriptional control. Curr Opin Genet Dev 2002, 12(2):198–209. 10.1016/S0959-437X(02)00287-3
Aravind L, Koonin EV: Novel predicted RNA-binding domains associated with the translation machinery. J Mol Evol 1999, 48(3):291–302. 10.1007/PL00006472
Romano JD, Michaelis S: Topological and mutational analysis of Saccharomyces cerevisiae Ste14p, founding member of the isoprenylcysteine carboxyl methyltransferase family. Mol Biol Cell 2001, 12(7):1957–1971.
Roje S: S-Adenosyl-L-methionine: beyond the universal methyl group donor. Phytochemistry 2006, 67(15):1686–1698. 10.1016/j.phytochem.2006.04.019
Booker SJ, Cicchillo RM, Grove TL: Self-sacrifice in radical S-adenosylmethionine proteins. Curr Opin Chem Biol 2007, 11(5):543–552. 10.1016/j.cbpa.2007.08.028
Layer G, Heinz DW, Jahn D, Schubert WD: Structure and function of radical SAM enzymes. Curr Opin Chem Biol 2004, 8(5):468–476. 10.1016/j.cbpa.2004.08.001
Cadicamo CD, Courtieu J, Deng H, Meddour A, O'Hagan D: Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism. Chem Bio Chem 2004, 5(5):685–690. 10.1002/cbic.200300839
Gilbert SD, Montange RK, Stoddard CD, Batey RT: Structural studies of the purine and SAM binding riboswitches. Cold Spring Harb Symp Quant Biol 2006, 71: 259–268. 10.1101/sqb.2006.71.015
Montange RK, Batey RT: Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 2006, 441(7097):1172–1175. 10.1038/nature04819
Kozbial PZ, Mushegian AR: Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 2005, 5: 19. 10.1186/1472-6807-5-19
Misako K, Kouichi M: Caffeine synthase and related methyltransferases in plants. Front Biosci 2004, 9: 1833–1842. 10.2741/1364
Pradhan S, Esteve PO: Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin Immunol 2003, 109(1):6–16. 10.1016/S1521-6616(03)00204-3
Chaib H, Prebet T, Vey N, Collette Y: Histone methyltransferases: a new class of therapeutic targets in cancer treatment? Med Sci (Paris) 2011, 27(8–9):725–732.
Wagner JM, Hackanson B, Lubbert M, Jung M: Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 2010, 1(3–4):117–136.
Borroni B, Agosti C, Archetti S, Costanzi C, Bonomi S, Ghianda D, Lenzi GL, Caimi L, Di Luca M, Padovani A: Catechol-O-methyltransferase gene polymorphism is associated with risk of psychosis in Alzheimer Disease. Neurosci Lett 2004, 370(2–3):127–129.
Item CB, Mercimek-Mahmutoglu S, Battini R, Edlinger-Horvat C, Stromberger C, Bodamer O, Muhl A, Vilaseca MA, Korall H, Stockler-Ipsiroglu S: Characterization of seven novel mutations in seven patients with GAMT deficiency. Hum Mutat 2004, 23(5):524.
Bottiglieri T, Godfrey P, Flynn T, Carney MW, Toone BK, Reynolds EH: Cerebrospinal fluid S-adenosylmethionine in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine. J Neurol Neurosurg Psychiatry 1990, 53(12):1096–1098. 10.1136/jnnp.53.12.1096
Rosenbaum JF, Fava M, Falk WE, Pollack MH, Cohen LS, Cohen BM, Zubenko GS: The antidepressant potential of oral S-adenosyl-l-methionine. Acta Psychiatr Scand 1990, 81(5):432–436. 10.1111/j.1600-0447.1990.tb05476.x
Bottiglieri T: Ademetionine (S-adenosylmethionine) neuropharmacology: implications for drug therapies in psychiatric and neurological disorders. Expert Opin Investig Drugs 1997, 6(4):417–426. 10.1517/13543784.6.4.417
Najm WI, Reinsch S, Hoehler F, Tobis JS, Harvey PW: S-adenosyl methionine (SAMe) versus celecoxib for the treatment of osteoarthritis symptoms: a double-blind cross-over trial. BMC Musculoskelet Disord 2004, 5: 6. ISRCTN36233495 10.1186/1471-2474-5-6
Zhu BT: CNS dopamine oxidation and catechol-O-methyltransferase: importance in the etiology, pharmacotherapy, and dietary prevention of Parkinson's disease. Int J Mol Med 2004, 13(3):343–353.
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28(1):235–242. 10.1093/nar/28.1.235
Wu CH, Nikolskaya A, Huang H, Yeh LS, Natale DA, Vinayaka CR, Hu ZZ, Mazumder R, Kumar S, Kourtesis P: PIRSF: family classification system at the Protein Information Resource. Nucleic Acids Res 2004, 32: D112-D114. Database issue 10.1093/nar/gkh097
Vasudevan S, Vinayaka CR, Natale DA, Huang H, Kahsay RY, Wu CH: Structure-guided rule-based annotation of protein functional sites in UniProt knowledgebase. Methods Mol Biol 2011, 694: 91–105. 10.1007/978-1-60761-977-2_7
Laskowski RA: PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 2001, 29(1):221–222. 10.1093/nar/29.1.221
Eddy SR: Hidden Markov models. Curr Opin Struct Biol 1996, 6(3):361–365. 10.1016/S0959-440X(96)80056-X
Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH: Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 2000, 25(6):300–302. 10.1016/S0968-0004(00)01561-9
Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG: SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 2004, 32: D226-D229. Database issue 10.1093/nar/gkh039
Gough J, Chothia C: SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res 2002, 30(1):268–272. 10.1093/nar/30.1.268
Sun G, Voigt JH, Marquez VE, Nicklaus MC: Prosit, an online service to calculate pseudorotational parameters of nucleosides and nucleotides. Nucleosides Nucleotides Nucleic Acids 2005, 24(5–7):1029–1032.
Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K: Using VMD: an introductory tutorial. Curr Protoc Bioinformatics 2008, 5: 5–7.
Schubert HL, Blumenthal RM, Cheng X: Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 2003, 28(6):329–335. 10.1016/S0968-0004(03)00090-2
Korolev S, Ikeguchi Y, Skarina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A: The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Biol 2002, 9(1):27–31. 10.1038/nsb737
Jansson A, Koskiniemi H, Erola A, Wang J, Mantsala P, Schneider G, Niemi J: Aclacinomycin 10-hydroxylase is a novel substrate-assisted hydroxylase requiring S-adenosyl-L-methionine as cofactor. J Biol Chem 2005, 280(5):3636–3644.
Dong A, Yoder JA, Zhang X, Zhou L, Bestor TH, Cheng X: Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Res 2001, 29(2):439–448. 10.1093/nar/29.2.439
McCulloch V, Shadel GS: Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol Cell Biol 2003, 23(16):5816–5824. 10.1128/MCB.23.16.5816-5824.2003
Bujnicki JM: In silico analysis of the tRNA: m1A58 methyltransferase family: homology-based fold prediction and identification of new members from Eubacteria and Archaea. FEBS Lett 2001, 507(2):123–127. 10.1016/S0014-5793(01)02962-3
Bujnicki JM: Sequence permutations in the molecular evolution of DNA methyltransferases. BMC Evol Biol 2002, 2: 3. 10.1186/1471-2148-2-3
Martin JL, McMillan FM: SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 2002, 12(6):783–793. 10.1016/S0959-440X(02)00391-3
Babor M, Sobolev V, Edelman M: Conserved positions for ribose recognition: importance of water bridging interactions among ATP, ADP and FAD-protein complexes. J Mol Biol 2002, 323(3):523–532. 10.1016/S0022-2836(02)00975-0
Cheng X, Collins RE, Zhang X: Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 2005, 34: 267–294. 10.1146/annurev.biophys.34.040204.144452
Daniels DS, Tainer JA: Conserved structural motifs governing the stoichiometric repair of alkylated DNA by O(6)-alkylguanine-DNA alkyltransferase. Mutat Res 2000, 460(3–4):151–163.
Timinskas A, Butkus V, Janulaitis A: Sequence motifs characteristic for DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene 1995, 157(1–2):3–11.
Malone T, Blumenthal RM, Cheng X: Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes. J Mol Biol 1995, 253(4):618–632. 10.1006/jmbi.1995.0577
Albalat R, Marti-Solans J, Canestro C: DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates. Brief Funct Genomics 2012, 11(2):142–155. 10.1093/bfgp/els009
Kuang D, Yao Y, Wang M, Pattabiraman N, Kotra LP, Hampson DR: Molecular similarities in the ligand binding pockets of an odorant receptor and the metabotropic glutamate receptors. J Biol Chem 2003, 278(43):42551–42559. 10.1074/jbc.M307120200
Schapira M: Structural Chemistry of Human SET Domain Protein Methyltransferases. Current chemical genomics 2011, 5(Suppl 1):85–94.
Xie P, Tian CY, Zhang LQ, An LG, He FC: Progress in the study of histone methyltransferases. Yi chuan = Hereditas /Zhongguo yi chuan xue hui bian ji 2007, 29(9):1035–1041. 10.1360/yc-007-1035
Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y, Struhl K: Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 2002, 16(12):1518–1527. 10.1101/gad.1001502
Rodriguez V, Vasudevan S, Noma A, Carlson BA, Green JE, Suzuki T, Chandrasekharappa SC: Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW) base in phenylalanine-tRNA. PLoS One 2012, 7(6):e39297. 10.1371/journal.pone.0039297