Structural and functional definition of the specificity of a novel caspase-3 inhibitor, Ac-DNLD-CHO

BMC Pharmacology - Tập 7 - Trang 1-16 - 2007
Atsushi Yoshimori1,2, Junichi Sakai2,3, Satoshi Sunaga2,3, Takanobu Kobayashi4, Satoshi Takahashi1, Naoyuki Okita2, Ryoko Takasawa3, Sei-ichi Tanuma2,3
1Institute for Theoretical Medicine, Inc., Tokyo, Japan
2Department of Biochemistry, Faculty of Pharmaceutical Sciences Tokyo University of Science, Chiba, Japan
3Genome and Drug Research Center, Tokyo University of Science, Chiba, Japan
4Department of Molecular Biology, Faculty of Pharmaceutical Science, Tokushima Bunri University, Kagawa, Japan

Tóm tắt

The rational design of peptide-based specific inhibitors of the caspase family members using their X-ray crystallographies is an important strategy for chemical knockdown to define the critical role of each enzyme in apoptosis and inflammation. Recently, we designed a novel potent peptide inhibitor, Ac-DNLD-CHO, for caspase-3 using a new computational screening system named the Amino acid Positional Fitness (APF) method (BMC Pharmacol. 2004, 4:7). Here, we report the specificity of the DNLD sequence against caspase-3 over other major caspase family members that participate in apoptosis by computational docking and site-directed mutagenesis studies. Ac-DNLD-CHO inhibits caspases-3, -7, -8, and -9 activities with Kiapp values of 0.68, 55.7, >200, and >200 nM, respectively. In contrast, a well-known caspase-3 inhibitor, Ac-DEVD-CHO, inhibits all these caspases with similar Kiapp values. The selective recognition of a DNLD sequence by caspase-3 was confirmed by substrate preference studies using fluorometric methylcoumarin-amide (MCA)-fused peptide substrates. The bases for its selectivity and potency were assessed on a notable interaction between the substrate Asn (N) and the caspase-3 residue Ser209 in the S3 subsite and the tight interaction between the substrate Leu (L) and the caspase-3 hydrophobic S2 subsite, respectively, in computational docking studies. Expectedly, the substitution of Ser209 with alanine resulted in loss of the cleavage activity on Ac-DNLD-MCA and had virtually no effect on cleaving Ac-DEVD-MCA. These findings suggest that N and L residues in Ac-DNLD-CHO are the determinants for the selective and potent inhibitory activity against caspase-3. On the basis of our results, we conclude that Ac-DNLD-CHO is a reliable, potent and selective inhibitor of caspase-3. The specific inhibitory effect on caspase-3 suggests that this inhibitor could become an important tool for investigations of the biological function of caspase-3. Furthermore, Ac-DNLD-CHO may be an attractive lead compound to generate novel effective non-peptidic pharmaceuticals for caspase-mediated apoptosis diseases, such as neurodegenerative disorders and viral infection diseases.

Tài liệu tham khảo

Arends MJ, Wyllie AH: Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 1991, 32: 223-254. Ellis RE, Yuan JY, Horvitz HR: Mechanisms and functions of cell death. Annu Rev Cell Biol. 1991, 7: 663-698. 10.1146/annurev.cb.07.110191.003311. Tanuma S: Molecular mechanics of apoptosis. Apoptosis in Normal Development and Cancer. Edited by: Sluyser M. 1996, London, Taylor & Francis, 39-59. Denault JB, Salvesen GS: Caspases: keys in the ignition of cell death. Chem Rev. 2002, 102: 4489-5500. 10.1021/cr010183n. Philchenkov A: Caspases: potential targets for regulating cell death. J Cell Mol Med. 2004, 8: 432-444. 10.1111/j.1582-4934.2004.tb00468.x. Cohen GM: Caspases: the executioners of apoptosis. Biochem J. 1997, 326: 1-16. Thornberry NA, Lazebnik Y: Caspases: enemies within. Science. 1998, 281: 1312-1316. 10.1126/science.281.5381.1312. Wolf BB, Green DR: Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem. 1999, 274: 20049-20052. 10.1074/jbc.274.29.20049. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin T, Yu VL, Miller DK: Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995, 376: 37-43. 10.1038/376037a0. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM: An induced proximity model for caspase-8 activation. J Biol Chem. 1998, 273: 2926-2930. 10.1074/jbc.273.5.2926. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES: Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell. 1998, 1: 949-957. 10.1016/S1097-2765(00)80095-7. Chang HY, Yang X: Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev. 2000, 64: 821-846. 10.1128/MMBR.64.4.821-846.2000. Shimohama S: Apoptosis in Alzheimer's disease. Apoptosis. 2000, 5: 9-16. 10.1023/A:1009625323388. Jordan J, Galindo MF, Cena V, Gonzalez-Garcia C: Cysteine proteinase and neurodegeneration. Rev Neurol. 2000, 31: 333-340. Kaufmann SH, Gores GJ: Apoptosis in cancer: cause and cure. Bioessays. 2000, 22: 1007-1017. 10.1002/1521-1878(200011)22:11<1007::AID-BIES7>3.0.CO;2-4. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA: Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 1996, 384: 368-372. 10.1038/384368a0. Wen LP, Fahrni JA, Troie S, Guan JL, Orth K, Rosen GD: Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem. 1997, 272: 26056-26061. 10.1074/jbc.272.41.26056. Takahashi A, Hirata H, Yonehara S, Imai Y, Lee KK, Moyer RW, Turner PC, Mesner PW, Okazaki T, Sawai H, Kishi S, Yamamoto K, Okuma M, Sasada M: Affinity labeling displays the stepwise activation of ICE-related proteases by Fas, staurosporine, and CrmA-sensitive caspase-8. Oncogene. 1997, 14: 2741-2752. 10.1038/sj.onc.1201131. Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, Yamamoto K, Sasada M: Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med. 1998, 187: 587-600. 10.1084/jem.187.4.587. Yang W, Guastella J, Huang JC, Wang Y, Zhang L, Xue D, Tran M, Woodward R, Kasibhatla S, Tseng B, Drewe J, Cai SX: MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity. Br J Pharmacol. 2003, 140: 402-412. 10.1038/sj.bjp.0705450. Li M, Ona VO, Guegan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM: Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science. 2000, 288: 335-339. 10.1126/science.288.5464.335. Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, Klender P, Xanthoudakis S, Roy S, Black C, Grimm E, Aspiotis R, Han Y, Nicholson DW, Karl IE: Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol. 2000, 1: 496-501. 10.1038/82741. Cheng Y, Deshmukh M, D'Costa A, Demaro JA, Gidday JM, Shah A, Sun Y, Jacquin MF, Johnson EM, Holtzman DM: Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest. 1998, 101: 1992-1999. Rano TA, Timkey T, Peterson EP, Rotonda J, Nicholson DW, Becker JW: A combinatorial approach for determining protease specificities: application to interleukin-1beta converting enzyme (ICE). Chem Biol. 1997, 4: 149-55. 10.1016/S1074-5521(97)90258-1. Schweizer A, Briand C, Grutter MG: Crystal structure of caspase-2, apical initiator of the intrinsic apoptotic pathway. J Biol Chem. 2003, 278: 42441-42447. 10.1074/jbc.M304895200. Rotonda J, Nicholson DW, Fazil KM, Gallant M, Gareau Y, Labelle M, Peterson EP, Rasper DM, Ruel R, Vaillancourt JP, Thornberry NA, Becker JW: The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Biol. 1996, 3: 619-625. 10.1038/nsb0796-619. Wei Y, Fox T, Chambers SP, Sintchak J, Coll JT, Golec JM, Swenson L, Wilson KP, Charifson PS: The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem Biol. 2000, 7: 423-432. 10.1016/S1074-5521(00)00123-X. Blanchard H, Donepudi M, Tschopp M, Kodandapani L, Wu JC, Grutter MG: Caspase-8 specificity probed at subsite S(4): crystal structure of the caspase-8-Z-DEVD-cho complex. J Mol Biol. 2000, 302: 9-16. 10.1006/jmbi.2000.4041. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS: Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA. 2001, 98: 14250-14255. 10.1073/pnas.231465798. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt JP, Chapman KT, Nicholson DW: A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997, 272: 17907-17911. 10.1074/jbc.272.29.17907. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA: Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem. 1998, 273: 32608-32613. 10.1074/jbc.273.49.32608. Yoshimori A, Takasawa R, Tanuma S: A novel method for evaluation and screening of caspase inhibitory peptides by the amino acid positional fitness score. BMC Pharmacol. 2004, 4: 7-10.1186/1471-2210-4-7. Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y: Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 1997, 16: 2271-2281. 10.1093/emboj/16.9.2271. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998, 19: 1639-1662. 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4: 406-425. Lavigne P, Bagu JR, Boyko R, Willard L, Holmes CF, Sykes BD: Structure-based thermodynamic analysis of the dissociation of protein phosphatase-1 catalytic subunit and microcystin-LR docked complexes. Protein Sci. 2000, 9: 252-264. Tyas L, Brophy VA, Pope A, Rivett AJ, Tavare JM: Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep. 2000, 1: 266-270. 10.1093/embo-reports/kvd050. Han Y, Giroux A, Grimm EL, Aspiotis R, Francoeur S, Bayly CI, Mckay DJ, Roy S, Xanthoudakis S, Vaillancourt JP, Rasper DM, Tam J, Tawa P, Thornberry NA, Paterson EP, Garcia-Calvo M, Becker JW, Rotonda J, Nicholson DW, Zamboni RJ: Discovery of novel aspartyl ketone dipeptides as potent and selective caspase-3 inhibitors. Bioorg Med Chem Lett. 2004, 14: 805-808. 10.1016/j.bmcl.2003.10.064. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF: In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. 1999, 285: 1569-1572. 10.1126/science.285.5433.1569. Derossi D, Joliot AH, Chassaing G, Prochiantz A: The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem. 1994, 269: 10444-10450. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y: Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 2001, 276: 5836-5840. 10.1074/jbc.M007540200. Guo Z, Xian M, Zhang W, McGill A, Wang PG: N-nitrosoanilines: a new class of caspase-3 inhibitors. Bioorg Med Chem. 2001, 9: 99-106. 10.1016/S0968-0896(00)00222-4. Becker JW, Rotonda J, Soisson SM, Aspiotis R, Bayly C, Francoeur S: Reducing the peptidyl features of caspase-3 inhibitors: a structural analysis. J Med Chem. 2004, 47: 2466-2474. 10.1021/jm0305523. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673. Henikoff S, Henikoff JG: Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA. 1992, 89: 10915-10919. 10.1073/pnas.89.22.10915. Perriere G, Gouy M: WWW-query: an on-line retrieval system for biological sequence banks. Biochimie. 1996, 78: 364-369. 10.1016/0300-9084(96)84768-7. McLaghlan AD: Rapid comparison of protein structures. Acta Crystallographica. 1982, A38: 871-873. ProFit. [http://www.bioinf.org.uk/software/profit] Berendsen HJC, van der Spoel D, van Drunen R: GROMACS: A message-passing parallel molecular dynamics implementation. Comp Phys Comm. 1995, 91: 43-56. 10.1016/0010-4655(95)00042-E. Lindahl E, Hess B, van der Spoel D: GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod. 2001, 7: 306-317. Schuettelkopf AW, van Aalten DMF: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. 2004, 60 (Pt 8): 1355-1363. Bartolucci C, Perola E, Pilger C, Fels G, Lamba D: Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: implications for the design of new anti-Alzheimer drugs. Proteins: Struct Funct Genet. 2001, 42 (2): 182-191. 10.1002/1097-0134(20010201)42:2<182::AID-PROT50>3.0.CO;2-1. Jenkins JL, Shapiro R: Identification of small-molecule inhibitors of human angiogenin and characterization of their binding interactions guided by computational docking. Biochemistry. 2003, 42: 6674-6687. 10.1021/bi034164e. Kabsch W, Sander C: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983, 22: 2577-2637. 10.1002/bip.360221211.