Structural and functional characterisation of the methionine adenosyltransferase from Thermococcus kodakarensis

Springer Science and Business Media LLC - Tập 13 - Trang 1-10 - 2013
Julia Schlesier1, Jutta Siegrist2, Stefan Gerhardt1, Annette Erb2, Simone Blaesi2, Michael Richter3, Oliver Einsle1,4, Jennifer N Andexer2
1Institute of Biochemistry, Albert-Ludwigs-University Freiburg, Freiburg, Germany
2Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
3Laboratory for Biomaterials, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
4BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany

Tóm tắt

Methionine adenosyltransferases catalyse the synthesis of S-adenosylmethionine, a cofactor abundant in all domains of life. In contrast to the enzymes from bacteria and eukarya that show high sequence similarity, methionine adenosyltransferases from archaea diverge on the amino acid sequence level and only few conserved residues are retained. We describe the initial characterisation and the crystal structure of the methionine adenosyltransferase from the hyperthermophilic archaeon Thermococcus kodakarensis. As described for other archaeal methionine adenosyltransferases the enzyme is a dimer in solution and shows high temperature stability. The overall structure is very similar to that of the bacterial and eukaryotic enzymes described, with some additional features that might add to the stability of the enzyme. Compared to bacterial and eukaryotic structures, the active site architecture is largely conserved, with some variation in the substrate/product-binding residues. A flexible loop that was not fully ordered in previous structures without ligands in the active side is clearly visible and forms a helix that leaves an entrance to the active site open. The similar three-dimensional structures of archaeal and bacterial or eukaryotic methionine adenosyltransferases support that these enzymes share an early common ancestor from which they evolved independently, explaining the low similarity in their amino acid sequences. Furthermore, methionine adenosyltransferase from T. kodakarensis is the first structure without any ligands bound in the active site where the flexible loop covering the entrance to the active site is fully ordered, supporting a mechanism postulated earlier for the methionine adenosyltransferase from E. coli. The structure will serve as a starting point for further mechanistic studies and permit the generation of enzyme variants with different characteristics by rational design.

Tài liệu tham khảo

Fontecave M, Atta M, Mulliez E: S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 2004, 29: 243–249. 10.1016/j.tibs.2004.03.007 Frey PA, Hegeman AD, Ruzicka FJ: The Radical SAM Superfamily. Crit Rev Biochem Mol Biol 2011, 43: 63–88. Kim J, Xiao H, Bonanno JB, Kalyanaraman C, Brown S, Tang X, Al-Obaidi NF, Patskovsky Y, Babbitt PC, Jacobson MP, Lee Y-S, Almo SC: Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function. Nature 2013, 498: 123–126. 10.1038/nature12180 Sánchez-Pérez GF, Bautista JM, Pajares MA: Methionine Adenosyltransferase as a Useful Molecular Systematics Tool Revealed by Phylogenetic and Structural Analyses. J Mol Biol 2004, 335: 693–706. 10.1016/j.jmb.2003.11.022 Reczkowski RS, Taylor JC, Markham GD: The Active-Site Arginine of S-Adenosylmethionine Synthetase Orients the Reaction Intermediate. Biochemistry 1998, 37: 13499–13506. 10.1021/bi9811011 Kamarthapu V, Rao KV, Srinivas PNBS, Reddy GB, Reddy VD: Structural and kinetic properties of Bacillus subtilis S-adenosylmethionine synthetase expressed in Escherichia coli. Biochim Biophys Acta 2008, 1784: 1949–1958. 10.1016/j.bbapap.2008.06.006 Zhao X, Gust B, Heide L: S-Adenosylmethionine (SAM) and antibiotic biosynthesis: effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Arch Microbiol 2010, 192: 289–297. 10.1007/s00203-010-0548-x Luo Y, Yuan Z, Luo G, Zhao F: Expression of Secreted His-Tagged S-adenosylmethionine Synthetase in the Methylotrophic Yeast Pichia pastoris and Its Characterization, One-Step Purification, and Immobilization. Biotechnol Prog 2008, 24: 214–220. 10.1021/bp0702727 González B, Pajares MA, Hermoso JA, Guillerm D, Guillerm G, Sanz-Aparicio J: Crystal Structures of Methionine Adenosyltransferase Complexed with Substrates and Products Reveal the Methionine-ATP Recognition and Give Insights into the Catalytic Mechanism. J Mol Biol 2003, 331: 407–416. 10.1016/S0022-2836(03)00728-9 Ramani K, Yang H, Kuhlenkamp J, Tomasi L, Tsukamoto H, Mato JM, Lu SC: Changes in the expression of methionine adenosyltransferase genes and S-adenosylmethionine homeostasis during hepatic stellate cell activation. Hepatology 2010, 51: 986–995. Shafqat N, Muniz JRC, Pilka ES, Papagrigoriou E, von Delft F, Oppermann U, Yue WW: Insight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits. Biochem J 2013, 452: 27–36. Markham GD, Hafner EW, Tabor CW, Tabor H: S-Adenosylmethionine synthetase from Escherichia coli. J Biol Chem 1980, 255: 9082–9092. Komoto J, Yamada T, Takata Y, Markham GD, Takusagawa F: Crystal Structure of the S-Adenosylmethionine Synthetase Ternary Complex: A Novel Catalytic Mechanism of S-Adenosylmethionine Synthesis from ATP and Met. Biochemistry 2004, 43: 1821–1831. 10.1021/bi035611t Porcelli M, Cacciapuoti G, Carteni-Farina M, Gambacorta A: S-Adenosylmethionine synthetase in the thermophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem 1988, 177: 273–280. 10.1111/j.1432-1033.1988.tb14373.x Lu ZJ, Markham GD: Enzymatic Properties of S-Adenosylmethionine Synthetase from the Archaeon Methanococcus jannaschii. J Biol Chem 2002, 277: 16624–16631. 10.1074/jbc.M110456200 Graham DE, Bock CL, Schalk-Hihi C, Lu ZJ, Markham GD: Identification of a Highly Diverged Class of S-Adenosylmethionine Synthetases in the Archaea. J Biol Chem 2000, 275: 4055–4059. 10.1074/jbc.275.6.4055 Littlechild JA: Thermophilic archaeal enzymes and applications in biocatalysis. Biochem Soc Trans 2011, 39: 155–158. 10.1042/BST0390155 Egorova K, Antranikian G: Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 2005, 8: 649–655. 10.1016/j.mib.2005.10.015 Garrido F, Alfonso C, Taylor JC, Markham GD, Pajares MA: Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases. Biochim Biophys Acta 2009, 1794: 1082–1090. 10.1016/j.bbapap.2009.03.018 Garrido F, Taylor JC, Alfonso C, Markham GD, Pajares MA: Structural basis for the stability of a thermophilic methionine adenosyltransferase against guanidinium chloride. Amino Acids 2012, 42: 361–373. 10.1007/s00726-010-0813-y Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T: Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 2004, 1: 236–267. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T: Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 2005, 15: 352–363. 10.1101/gr.3003105 Atomi H, Imanaka T, Fukui T: Overview of the genetic tools in the Archaea. Front Microbiol 2012, 3: 1–13. Markham GD, Pajares MA: Structure-function relationships in methionine adenosyltransferases. Cell Mol Life Sci 2008, 66: 636–648. Kotb M, Kredich NM: S-Adenosylmethionine synthetase from human lymphocytes. Purification and characterization. J Biol Chem 1985, 260: 3923–3930. Takusagawa F, Kamitori S, Markham GD: Structure and Function of S-Adenosylmethionine Synthetase: Crystal Structures of S-Adenosylmethionine Synthetase with ADP, BrADP, and PPi at 2.8 Å Resolution. Biochemistry 1996, 35: 2586–2596. 10.1021/bi952604z Fu Z, Hu Y, Markham GD, Takusagawa F: Flexible Loop in the Structure of S-Adenosylmethionine Synthetase Crystallized in the Tetragonal Modification. J Biomol Struct Dyn 1996, 13: 727–739. 10.1080/07391102.1996.10508887 Dias MVB, Huang F, Chirgadze DY, Tosin M, Spiteller D, Dry EFV, Leadlay PF, Spencer JB, Blundell TL: Structural Basis for the Activity and Substrate Specificity of Fluoroacetyl-CoA Thioesterase FlK. J Biol Chem 2010, 285: 22495–22504. 10.1074/jbc.M110.107177 Kabsch W: XDS. Acta Crystallogr D 2010, 66: 125–132. 10.1107/S0907444909047337 Evans P: An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D 2011, 67: 282–292. 10.1107/S090744491003982X Cowtan K, Emsley P, Wilson KS: From crystal to structure with CCP4. Acta Crystallogr D 2011, 67: 233–234. 10.1107/S0907444911007578 Emsley P, Lohkamp B, Scott WG, Cowtan K: Features and development of Coot. Acta Crystallogr D 2010, 66: 486–501. 10.1107/S0907444910007493 Murshudov GN, Vagin AA, Dodson EJ: Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallogr D 1997, 53: 240–255. 10.1107/S0907444996012255 Stierand K, Rarey M: Drawing the PDB: Protein - Ligand Complexes in Two Dimensions. ACS Med Chem Lett 2010, 1: 540–545. 10.1021/ml100164p