Structural and electronic properties of medium-sized beryllium doped magnesium BeMg clusters and their anions

Results in Physics - Tập 26 - Trang 104341 - 2021
Ya-Ru Zhao1,2, Yuqing Xu2, Peng Chen2, Yuquan Yuan3, Yu Qian2, Qiao Li2
1Collaborative Innovation Center of Rare-Earth Optical Functional Materials and Devices Development, Baoji University of Arts and Sciences, Baoji, 721016, China
2College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, 721016, China
3School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jena, 2018, Super atomic clusters: design rules and potential for building blocks of materials, Chem Rev, 118, 5755, 10.1021/acs.chemrev.7b00524

Tyo, 2015, Catalysis by clusters with precise numbers of atoms, Nature Nanotech, 10, 577, 10.1038/nnano.2015.140

Doud, 2020, Superatoms in materials science, Nat Rev Mater, 5, 371, 10.1038/s41578-019-0175-3

Ghosh, 2018, Atomic-level doping of metal clusters, Accounts Chem Res, 51, 3094, 10.1021/acs.accounts.8b00412

Xia, 2016, Study of the structural and electronic properties of neutral and charged niobium-doped silicon clusters: niobium encapsulated in silicon cages, J Phys Chem C, 120, 677, 10.1021/acs.jpcc.5b09453

Claes, 2011, Structural identification of caged vanadium doped silicon clusters, Phys Rev Lett, 107, 10.1103/PhysRevLett.107.173401

Ngan, 2010, Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined far-infrared spectroscopic and computational study, J Am Chem Soc, 132, 15589, 10.1021/ja105099u

Zhu, 2016, Insights into the structural, electronic and magnetic properties of Ni-doped gold clusters: comparison with pure gold clusters, J Alloy Compd, 696, 402, 10.1016/j.jallcom.2016.11.324

Zhao, 2019, Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters, J Phys Chem C, 123, 28561, 10.1021/acs.jpcc.9b07184

Lu, 2021, Indentation strengths of zirconium diboride: intrinsic versus extrinsic mechanisms, J Phys Chem Lett, 12, 2848, 10.1021/acs.jpclett.1c00434

Kroto, 1985, C60: buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0

Zhai, 2014, Observation of an all-boron fullerene, Nat Chem, 6, 727, 10.1038/nchem.1999

Sarkar, 2009, Structure and thermodynamics of Fe55, Co55, and Ni55 clusters supported on a surface, Phys Rev B, 79, 10.1103/PhysRevB.79.125441

Li, 2003, Au20: a tetrahedral cluster, Science, 229, 864, 10.1126/science.1079879

Bergeron, 2004, Formation of Al13I: evidence for the superhalogen character of Al13, Science, 304, 84, 10.1126/science.1093902

Zhang, 2013, On the existence of designer magnetic superatoms, J Am Chem Soc, 135, 4856, 10.1021/ja400830z

Diederich, 2001, Electron delocalization in magnesium clusters grown in superclod helium drolpets, Phys Rev Lett, 86, 4807, 10.1103/PhysRevLett.86.4807

Thomas, 2002, Onset of metallic in magnesium clusters, Phys Rev Lett, 89, 10.1103/PhysRevLett.89.213403

Jellinek, 2002, Magnesium clusters: structural and electronic properties and the size-induced nonmetal-to-metal transition, J Phys Chem A, 106, 10919, 10.1021/jp020887g

Acioli, 2002, Electron binding energies of anionic magnesium clusters and the nonmetal-to-metal transition, Phys Rev Lett, 89, 10.1103/PhysRevLett.89.213402

Duanmu, 2016, Geometries, binding energies, ionization potentials, and electron affinities of metal clusters: Mgn0,±1, n=1–7, J Phys Chem C, 120, 13275, 10.1021/acs.jpcc.6b03080

De, 2011, The effect of ionization on the global minima of small and medium sized silicon and magnesium clusters, J Chem Phys, 134, 10.1063/1.3569564

Kumar, 1991, Structure, growth, and bonding nature of Mg clusters, Phys Rev B, 44, 8243, 10.1103/PhysRevB.44.8243

Belyaev, 2016, Structural, electronic, thermodynamic and spectral properties of Mgn (n=2–31) clusters: a DFT study, Comput Theor Chem, 1079, 34, 10.1016/j.comptc.2016.01.011

Heidari, 2011, Growth and structural properties of MgN (N=10–56) clusters: density functional theory study, J Phys Chem A, 115, 12307, 10.1021/jp204442e

Gong, 1993, Electronic structures of magnesium clusters, Phys Lett A, 181, 459, 10.1016/0375-9601(93)91150-4

Kaufmann, 2010, Small magnesium clusters: between van der Waals and valence bonds, Inorg Chem, 49, 3851, 10.1021/ic902485z

Li, 2010, The van der Waals potential of the magnesium dimer, J Chem Phys, 133, 10.1063/1.3479392

Kaplan, 2005, Comparative study of the electron affinities of beryllium and magnesium dimers and trimers, Int J Quantum Chem, 104, 468, 10.1002/qua.20633

Klopper, 1993, Towards the one particle basis set limit of second order correlation energies: MP2 R12 calculations on small Ben and Mgn clusters (n=1–4), J Chem Phys, 99, 5167, 10.1063/1.466018

Lyalin, 2003, Evolution the electronic and ionic structure of Mg clusters with increase in cluster size, Phys Rev A, 67, 10.1103/PhysRevA.67.063203

Akola, 2001, Metallic evolution of small magnesium clusters, Eur Phys J D, 16, 21, 10.1007/s100530170051

Janecek, 2011, Structure of Mgn and Mgn+ clusters up to n=30, Eur Phys J D, 63, 377, 10.1140/epjd/e2011-10694-2

Zhang, 2008, Ab initio calculation of neutral and singly charged Mgn (n≤11) clusters, Phys B, 403, 3119, 10.1016/j.physb.2008.03.021

Xia, 2016, Deciphering the structural evolution and electron and electronic properties of magnesium clusters: an aromatic homonuclear metal Mg17 cluster, J Phys Chem A, 120, 7947, 10.1021/acs.jpca.6b07322

Knight, 1984, Electronic shell structure and abundances of sodium clusters, Phys Rev Lett, 52, 2141, 10.1103/PhysRevLett.52.2141

Brack, 1993, The physics of simple metal clusters: self-consistent jellium model and semicalssical approaches, Rev Mod Phys, 65, 677, 10.1103/RevModPhys.65.677

Medel, 2011, Hund’s rule in superatoms with transition metal impurities, Proc Natl Acad Sci USA, 108, 10062, 10.1073/pnas.1100129108

Ge, 2013, First-principles prediction of magnetic superatoms in 4d-transition-metal-doped magnesium clusters, J Chem Phys, 139, 10.1063/1.4827515

Kong, 2014, Density functional theory study of small X-doped Mgn (X=Fe Co, and Ni, n=1–9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties, J Mol Model, 20, 2087, 10.1007/s00894-014-2087-x

Afshar, 2016, Spin and orbital magnesium in XMg8 (X=Sc-Ni): a relativistic density functional theory study, Mol Phys, 114, 3620, 10.1080/00268976.2016.1255795

Li, 2017, First-principles calculations on small MgnZn and Mgn-1Zn2 clusters: structures, stabilities, and electronic properties, Mater Chem Phys, 199, 585, 10.1016/j.matchemphys.2017.07.049

Ma, 2017, Hydrogen adsorption and dissociation on the TM-doped (TM=Ti, Nb) Mg55 nanoclusters: A DFT study, Int J Hydrogen Energ, 42, 24797, 10.1016/j.ijhydene.2017.08.086

Trivedi, 2016, Study of absorption and dissociation pathway of H2 molecule on MgnRh (n=1–10) clusters: a first principle investigation, Int J Hydrogen Energ, 41, 20113, 10.1016/j.ijhydene.2016.09.007

Luo, 2013, Probing the magic numbers of aluminum-magnesium cluster anions and their reactivity toward oxygen, J Am Chem Soc, 135, 4307, 10.1021/ja310467n

Yang, 2007, The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons, Eur Phys J D, 71, 191, 10.1140/epjd/e2017-80042-9

Xing, 2016, Probing the low-energy structures of aluminum-magnesium alloy clusters: a detailed study, Phys Chem Chem Phys, 18, 26177, 10.1039/C6CP05571K

Chen, 2021, Phase stability and supercondutivity of lead hydrides at high pressure, Phys Rev B, 103

Grover, 2017, Ionic versus metallic bonding in AlnNam and AlnMgm (m≤3, n+m≤15) clusters, J Chem Phys, 146, 10.1063/1.4985093

Wang, 2018, Structure and stability of AlnMgm (n=4–8, m=1–3) clusters: genetic algorithm and density functional theory approach, Comput Theor Chem, 1128, 15, 10.1016/j.comptc.2018.02.006

Khanna, 1988, Stability and observability of charged beryllium clusters, Phys Rev Lett, 61, 535, 10.1103/PhysRevLett.61.535

Kawai, 1990, From van der Waals to metallic bonding: the growth of Be clusters, Phys Rev Lett, 65, 80, 10.1103/PhysRevLett.65.80

Wang, 2001, Density functional study of beryllium clusters with gradient correction, J Phys: Condens Matter, 13, L753

Cerowski, 2005, Evolution of the electronic structure of Be clusters, J Chem Phys, 123, 10.1063/1.2001655

Kolchin, 2000, Electronic properties of small neutral and charged beryllium clusters, J Chem Phys, 113, 4083, 10.1063/1.1288388

Srinivas, 2004, Structural and electronic properties of small beryllium clusters: a theoretical study, J Chem Phys, 121, 7243, 10.1063/1.1791071

Medel, 2012, Metallic and molecular orbital concepts in XMg8 clusters, X=Be-F, J Chem Phys, 136, 10.1063/1.3700086

Zhang, 2020, Probing the structural evolution and electronic properties of divalent metal Be2Mgn clusters from small to medium-size, Sci Rep, 10, 6052, 10.1038/s41598-020-63237-8

Zeng, 2020, BeMg9: A tower-like type doped magnesium clusters with high stability, Comput Mater Sci, 182, 10.1016/j.commatsci.2020.109795

Wang, 2010, Crystal structure prediction via particle swarm optimization, Phys Rev B: Condens Matter Mater Phys, 82, 094116, 10.1103/PhysRevB.82.094116

Lv, 2012, Particle swarm structure prediction on clusters, J Chem Phys, 137, 10.1063/1.4746757

Ding, 2015, Understanding the structural transformation, stability of medium sized neutral and charged silicon clusters, Sci Rep, 5, 15951, 10.1038/srep15951

Lai, 2021, Growth mechanism and electronic and magnetic properties of AgnTi alloy clusters, J Phys Chem Solids, 148, 10.1016/j.jpcs.2020.109757

Jia, 2019, Interfacial engineering of Mo2C-Mo3C2 heteronanowires for high performance hydrogen evolution reactions, Nanoscale, 11, 23318, 10.1039/C9NR08986A

Li, 2020, Analysis of the structures, stabilities and electronic properties of MB16– (M=V, Cr, Mn, Fe Co, Ni) clusters and assemblies, New J Chem, 44, 5109, 10.1039/C9NJ06335H

Lu, 2020, Elucidating stress-strain of ZrB12 from first-priciples studies, J Phys Chem Lett, 11, 9165, 10.1021/acs.jpclett.0c02656

Chen, 2020, Structural, mechanical and electronic properties study on 5 transition metals ternary mononitrides from first-principle calculations, J Alloy Compd, 813, 10.1016/j.jallcom.2019.152246

Die, 2020, The ground-state structure, optical-absorption and photoelectron spectrum of silver clusters, Physica E, 117, 10.1016/j.physe.2019.113805

Sun, 2020, Second group of high-pressure and high-temperature lanthanide polyhydride superconductors, Phys Rev B, 102, 10.1103/PhysRevB.102.144524

Chen, 2021, Systematic study on mechanical and electronic properties of ternary VAlN, TiAlN, WAlN systems by first-principle calculations, Ceram Int, 47, 7511, 10.1016/j.ceramint.2020.11.090

Binkley, 1977, Self-consistent molecular orbital methods. XIX. spliit-valence gaussian-type basis sets for beryllium, J Chem Phys, 66, 879, 10.1063/1.433929

Frisch MJ. et al. Gaussian 09 (Revision C.0), Gaussian, Inc., Wallingford, CT; 2009.

Krishnan, 1980, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J Chem Phys, 72, 650, 10.1063/1.438955

Mclean, 1980, Contracted gaussian basis sets for molecular calculation. I. Second row atoms, Z=11–18, J Chem Phys, 72, 5639, 10.1063/1.438980

Adamo, 1999, Toward reliable density functional methods without adjustable parameters: the PBE0 model, J Chem Phys, 110, 6158, 10.1063/1.478522

Weigend, 2005, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys Chem Chem Phys, 7, 3297, 10.1039/b508541a

Zubarev, 2008, Developing paradigms of chemical bonding: adaptive natural density partitioning, Phys Chem Chem Phys, 10, 5207, 10.1039/b804083d

Lu, 2012, Multiwfn: a multifunctional wavefunction analyzer, Comput Phys Commun, 33, 580

Koopmans, 1934, Über die auordnung von wellenfunktionen und eigenwerten zu den einzelnen elektroen eines atoms, Physica, 1, 104, 10.1016/S0031-8914(34)90011-2