Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation

Journal Physics D: Applied Physics - Tập 43 Số 37 - Trang 374009 - 2010
Christian Riedl1, Camilla Coletti1, Ulrich Starke1
1Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

Tóm tắt

Graphene, a monoatomic layer of graphite, hosts a two-dimensional electron gas system with large electron mobilities which makes it a prospective candidate for future carbon nanodevices. Grown epitaxially on silicon carbide (SiC) wafers, large area graphene samples appear feasible and integration in existing device technology can be envisioned. This paper reviews the controlled growth of epitaxial graphene layers on SiC(0 0 0 1) and the manipulation of their electronic structure. We show that epitaxial graphene on SiC grows on top of a carbon interface layer that—although it has a graphite-like atomic structure—does not display the linear π-bands typical for graphene due to a strong covalent bonding to the substrate. Only the second carbon layer on top of this interface acts like monolayer graphene. With a further carbon layer, a graphene bilayer system develops. During the growth of epitaxial graphene on SiC(0 0 0 1) the number of graphene layers can be precisely controlled by monitoring the π-band structure. Experimental fingerprints for in situ growth control could be established. However, due to the influence of the interface layer, epitaxial graphene on SiC(0 0 0 1) is intrinsically n-doped and the layers have a long-range corrugation in their density of states. As a result, the Dirac point energy where the π-bands cross is shifted away from the Fermi energy, so that the ambipolar properties of graphene cannot be exploited. We demonstrate methods to compensate and eliminate this structural and electronic influence of the interface. We show that the band structure of epitaxial graphene on SiC(0 0 0 1) can be precisely tailored by functionalizing the graphene surface with tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) molecules. Charge neutrality can be achieved for mono- and bilayer graphene. On epitaxial bilayer graphene, where a band gap opens due to the asymmetric electric field across the layers imposed by the interface, the magnitude of this band gap can be increased up to more than double its initial value. The hole doping allows the Fermi level to shift into the energy band gap. The impact of the interface layer can be completely eliminated by decoupling the graphene from the SiC substrate by a hydrogen intercalation technique. We demonstrate that hydrogen can migrate under the interface layer and passivate the underlying SiC substrate. The interface layer alone transforms into a quasi-free standing monolayer. Epitaxial monolayer graphene turns into a decoupled bilayer. In combination with atmospheric pressure graphitization, the intercalation process allows the production of quasi-free standing epitaxial graphene on large SiC wafers and represents a highly promising route towards epitaxial graphene based nanoelectronics.

Từ khóa


Tài liệu tham khảo

1947, Phys. Rev., 71, 622, 10.1103/PhysRev.71.622

2005, Nature, 438, 197, 10.1038/nature04233

2005, Nature, 438, 201, 10.1038/nature04235

2007, Nature Mater., 6, 183, 10.1038/nmat1849

2007, Solid State Commun., 143, 92, 10.1016/j.ssc.2007.04.023

2009, Science, 324, 1530, 10.1126/science.1158877

2004, Science, 306, 666, 10.1126/science.1102896

2004, J. Phys. Chem., 108, 19912, 10.1021/jp040650f

2009, Surf. Sci., 603, 1841, 10.1016/j.susc.2008.08.037

2009, Nature Nanotechnol., 4, 217, 10.1038/nnano.2009.58

2008, Nano Lett., 8, 2045, 10.1021/nl801384y

2007, Nature, 446, 60, 10.1038/nature05545

2009, Phys. Rev. Lett., 103, 246804, 10.1103/PhysRevLett.103.246804

1935, Ann. Inst. H Poincaré, 5, 177

1937, Phys. Z. Sowjetunion, 11, 26

2002, Phys. Rev., 66, 035412, 10.1103/PhysRevB.66.035412

2009, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109

1984, Phys. Rev. Lett., 53, 2449, 10.1103/PhysRevLett.53.2449

2006, Nature Phys., 2, 177, 10.1038/nphys245

2006, Nature Phys., 2, 620, 10.1038/nphys384

2007, Solid State Commun., 143, 3, 10.1016/j.ssc.2007.02.043

2006, Phys. Rev. Lett., 96, 086805, 10.1103/PhysRevLett.96.086805

2007, Phys. Rev. Lett., 99, 216802, 10.1103/PhysRevLett.99.216802

2009, Nature, 459, 820, 10.1038/nature08105

2006, Phys. Rev. Lett., 97, 215501, 10.1103/PhysRevLett.97.215501

2007, Phys. Rev., 76, 075429, 10.1103/PhysRevB.76.075429

2008, Nature Mater., 7, 406, 10.1038/nmat2166

2006, Science, 312, 1191, 10.1126/science.1125925

2006, Science, 313, 951, 10.1126/science.1130681

2007, Phys. Rev., 76, 245406, 10.1103/PhysRevB.76.245406

2009, Nature Mater., 8, 203, 10.1038/nmat2382

2010, Science, 327, 662, 10.1126/science.1184289

1975, Surf. Sci., 48, 463, 10.1016/0039-6028(75)90419-7

1998, Phys. Rev., 58, 16396, 10.1103/PhysRevB.58.16396

2009, J. Phys.: Condens. Matter, 21, 134016, 10.1088/0953-8984/21/13/134016

2008, Phys. Rev., 78, 245403, 10.1103/PhysRevB.78.245403

2009, Appl. Phys. Lett., 95, 231907, 10.1063/1.3265916

2010, Phys. Status Solidi, 207, 300, 10.1002/pssa.200982412

2007, Phys. Rev. Lett., 98, 206802, 10.1103/PhysRevLett.98.206802

2008, Appl. Phys. Lett., 93, 033106, 10.1063/1.2960341

2008, Nano Lett., 8, 4603, 10.1021/nl802996s

2010, Phys. Rev., 81, 235401, 10.1103/PhysRevB.81.235401

2005, Mater. Sci. Forum, 483-485, 761, 10.4028/www.scientific.net/MSF.483-485.761

2009, Mater. Sci. Forum, 615-617, 589, 10.4028/www.scientific.net/MSF.615-617.589

1999, J. Appl. Phys., 85, 3569, 10.1063/1.369716

2004, J. Phys.: Condens. Matter, 16, S1755, 10.1088/0953-8984/16/17/016

2008, Electrochem. Solid-State Lett., 11, H285, 10.1149/1.2961590

2002

2001, Nucl. Instrum. Methods Phys. Res., 467-468, 520, 10.1016/S0168-9002(01)00399-0

2004, 281

1998, Phys. Rev. Lett., 80, 758, 10.1103/PhysRevLett.80.758

1999, Phys. Rev. Lett., 82, 2107, 10.1103/PhysRevLett.82.2107

2007, Mater. Sci. Forum, 556-557, 525, 10.4028/www.scientific.net/MSF.556-557.525

2008, Phys. Rev., 77, 155303, 10.1103/PhysRevB.77.155303

1997, Phys. Status Solidi, 202, 501, 10.1002/1521-3951(199707)202:1<501::AID-PSSB501>3.0.CO;2-H

2005, Surf. Sci., 596, 176, 10.1016/j.susc.2005.09.013

1999, Phys. Rev., 60, 11653, 10.1103/PhysRevB.60.11653

2010

1997, Appl. Phys., 65, 587, 10.1007/s003390050626

1998, Mater. Sci. Forum, 264-268, 321, 10.4028/www.scientific.net/MSF.264-268.321

2008

2008, Phys. Rev. Lett., 100, 176802, 10.1103/PhysRevLett.100.176802

2008, Phys. Rev., 77, 235412, 10.1103/PhysRevB.77.235412

2007, New J. Phys., 9, 385, 10.1088/1367-2630/9/10/385

2009

2007, Nature Mater., 6, 770, 10.1038/nmat2003

2007, Proc. Natl Acad. Sci. USA, 104, 9209, 10.1073/pnas.0703337104

2009, Mater. Sci. Forum, 615-617, 219, 10.4028/www.scientific.net/MSF.615-617.219

2008, Phys. Rev., 77, 075413, 10.1103/PhysRevB.77.075413

2008, Nano Lett., 8, 4320, 10.1021/nl802156w

2008, Phys. Rev., 77, 115416, 10.1103/PhysRevB.77.115416

2008, Appl. Phys. Lett., 92, 011914, 10.1063/1.2828975

2008, Appl. Phys. Lett., 92, 201918, 10.1063/1.2929746

2007, Nature Phys., 3, 36, 10.1038/nphys477

2007, Nature Mater., 6, 652, 10.1038/nmat1967

2008, Nano Lett., 8, 173, 10.1021/nl072364w

2008, Phys. Rev. Lett., 101, 086402, 10.1103/PhysRevLett.101.086402

2009, Prog. Surf. Sci., 84, 279, 10.1016/j.progsurf.2009.06.002

2009, J. Am. Chem. Soc., 131, 1336, 10.1021/ja8057327

2009, J. Phys. Chem., 113, 2, 10.1021/jp806905e

2001, Appl. Phys. Lett., 78, 410, 10.1063/1.1343849

1991, Surf. Sci., 257, 129, 10.1016/0039-6028(91)90786-R

2007, J. Am. Chem. Soc., 129, 10418, 10.1021/ja071658g

1988, J. Phys. Chem., 92, 1394, 10.1021/j100317a005

2007, Phys. Rev. Lett., 99, 256801, 10.1103/PhysRevLett.99.256801

2007, J. Am. Chem. Soc., 129, 8084, 10.1021/ja072133r

2010, Mater. Sci. Forum, 645-648, 623, 10.4028/www.scientific.net/MSF.645-648.623