Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy

C. M. Botelho1, M. A. Lopes1,2, I. R. Gibson3, S. M. Best4,5, J. D. Santos2,1
1INEB – Instituto de Engenharia Biomédica, Porto, Portugal
2Departamento de Engenharia de Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
3Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
4Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
5St. John’s College, Cambridge, UK

Tóm tắt

The aim of this study was to determine the effect of the incorporation of silicon on the surface charge of hydroxyapatite (HA) and to assess surface structural changes of HA and Si–HA induced by dissolution in both static and dynamic systems. X-ray photoelectron spectroscopy (XPS) analysis showed that SiO4 4− groups were substituted for PO4 3− groups in the silicon-hydroxyapatite (Si–HA) lattice according to a previously proposed substitution mechanism without the formation of other crystalline phases, such as tricalcium phosphate or calcium oxide. The substituted silicon induced a decrease in the net surface charge and the isoelectric point of HA as determined by zeta potential (ZP) measurements. At physiological pH=7.4 the surface charge of Si–HA was significantly lowered compared to unmodified HA, i.e. −50±5 to −71±5 eV, caused by the presence of silicate groups in the HA lattice, which may account for a faster in vitro apatite formation using SBF testing. XPS results indicated that silicon seems to be preferentially leached out from Si–HA surface compared to other ionic species after dissolution studies in tris-buffer using a dynamic system.

Từ khóa


Tài liệu tham khảo

E. M. Carlisle, Fed. Proc. 43 (1984) 680.

E. M. Carlisle, in “Silicon Biochemistry”, edited by D. Evered and M. O'Connor (Wiley, New York, 1986).

K. Schwarz, in “Biochemistry of Silicon and Related Problems”, edited by G. Bendz and I. Lindqvist (Plenum Press, New York, 1978) pp. 207-230.

K. Schwarz and D. B. Milne, Nature 239 (1972) 333.

M. G. Voronkov, V. I. Skorobogatova, E. K. Vugmeister and V. Makarskii, Dok/ady Biochemistry 222 (1975) 29.

L. L. Hench, in “Biological Implications” (1999) pp. 116-163.

P. E. Keeting, M. J. Oursler, K. E. Weigand, S. K. Bonds, T. S. Spelsberg and B. L. Riggs, J. Bone Minera/Res. 7 (1992) 1281.

L. L. Hench, J. Phys. 43 (1982) 625.

L. L. Hench, J. Am. Ceram. Soc. 74 (1991) 1487.

L. L. Hench and J. Wilson, “An Introduction to Bioceramics” (World Scientific Publishing Co., Singapore, 1999).

L. J. Jha, S. Best, J. D. Santos, I. R. Gibson and W. Bonfield, “Silicon-Substituted Apatites and Process for the Preparation Thereof”, Worldwide Patent, PCT/GB97/02325 and US Patent Serial No 09/147773 (1999).

I. R. Gibson, S. M. Best and W. Bonfield, J. Biomed. Mat. Res. 44 (1999) 422.

I. R. Gibson, J. Huang, S. M. Best and W. Bonfield, in “Bioceramics, Vol. 12, Proceedings of the 12th International Symposium on Ceramics in Medicine (Nara, Japan November 1999)”, edited by H. Ohgushi, G. W. Hastings and T. Yoshikawa (World Scientific Publishing Co., London, 1999) pp. 191-194.

I. R. Gibson, K. A. Hing, P. A. Revell, J. D. Santos, S. M. Best and W. Bonfield, Key Engin. Mat. 218–222 (2002) 203.

N. G. Maroudas, J. Theoret. Biol. 49 (1975) 417.

P. B. Van Wachem, A. H. Hogt and T. Beueling et al., Biomaterials 8 (1987) 323.

J. E. Davies, in “Surface Characterization of Biomaterials”, edited by B. D. Ratner (Elsevier, Amsterdam, 1998) pp. 219-234.

R. M. Shelton, A. C. Rasmussen and J. E. Davies, Biomaterials 9 (1988) 24.

P. Ducheyne, J. Beight, J. Cuckler, B. Evans and S. Radin, ibid. 11 (1990) 531.

H. Ohgushi, V. M. Goldberg and A. I. Caplan, J. Orthop. Res. 7 (1989) 568.

G. Daculsi, R. Z. Le Geros, E. Nery, K. Lynch and B. Kerebel, J. Biomed. Mater. Res. 23 (1989) 883.

K. Hyakuna, T. Yamamuro, Y. Kotoura, Y. Kakutani, T. Kitsugi, H. Takagi, M. Oka and T. Kokubo, ibid. 23 (1989) 1049.

Y. Kotoura, T. Yamamuro, J. Shikata, Y. Kakutani, T. Kitsugi, K. Hyakuna and H. Tanaka, Orthop. Res. Sci. 13 (1986) 633.

T. Fujiu and M. Ogino, J. Biomed. Mater. Res. 18 (1984) 845.

I. Rehman and W. Bonfield, J. Mat. Sci.: Mater. in Med. 8 (1997) 1.

R. A. Nyquist, C. L. Putzig and M. A. Leugers, Infrared and Raman Spectral Atlas of Inorganic Compounds and Organic Salts 3 (1995).

NIST — National Institute of Standards and Technology Database.

W. Van Raemdonck, P. Ducheyne and P. De Meester, Metal and Ceramic Biomaterials (CRC Press, 1984) 143-146.

I. R. Gibson, L. J. Jha, J. D. Santos, S. M. Best and W. Bonfield, in “Bioceramics, Vol. 11, Proceedings of the 11th International Symposium on Ceramics in Medicine (New York, NY, USA, November 1998)”, edited by R. Z. LeGeros and J. P. LeGeros (World Scientific Publishing Co., USA, 1998).