Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tính chất cấu trúc, từ tính và hiệu ứng magnetocaloric trong orthokromit đất hiếm (Sm, Nd và La)CrO3 cho sản phẩm làm mát
Tóm tắt
Giai đoạn polycrystalline của các orthokromit SmCrO3, NdCrO3 và LaCrO3 đã được tổng hợp bằng phương pháp phản ứng trong trạng thái rắn. Các pha orthorhombic tinh khiết với nhóm không gian Pnma đã được xác nhận bằng nhiễu xạ tia X. Hơn nữa, quang phổ FTIR đã chứng minh sự hình thành các liên kết Sm–O, Nd–O và La–O trong SmCrO3, NdCrO3 và LaCrO3 tương ứng, cũng như các liên kết Cr–O và Cr–O–Cr trong tất cả các mẫu nghiên cứu. Kết quả về hình thái và thành phần hạt được thu thập bằng phương pháp hiển vi điện tử quét (SEM) và phổ tán xạ năng lượng tia X (EDX). Máy đo từ trường Quantum Design XL-SQUID được sử dụng để xác định loại chuyển tiếp từ tính và nhiệt độ chuyển tiếp cho từng mẫu. Chúng tôi phát hiện rằng các mẫu của chúng tôi thể hiện một chuyển tiếp tại 195 K, 65 K và 35 K cho SmCrO3, NdCrO3 và LaCrO3 tương ứng. Đổi entropy từ tính (∆Sm), như một tham số chính để đánh giá hiệu ứng magnetocaloric, đã được tính toán. Các mẫu của chúng tôi thể hiện ∆Sm trong khoảng 0.11 đến 0.25 J kg−1 K−1 dưới trường magnetic bên ngoài 5 T.
Từ khóa
#orthokromit #từ tính #hiệu ứng magnetocaloric #SmCrO3 #NdCrO3 #LaCrO3 #phân tích SEM #FTIR #nhiễu xạ tia X #máy đo từ trườngTài liệu tham khảo
Cao, Y., Cao, S., Ren, W., Feng, Z., Yuan, S., Kang, B., Lu, B., Zhang, J., Cao, Y., Cao, S., Ren, W., Feng, Z., Yuan, S., Kang, B.: Magnetization switching of rare earth orthochromite CeCrO3. 232405, 1–5 (2014). https://doi.org/10.1063/1.4882642
Yoshii, K.: Magnetic properties of perovskite GdCrO3. 208, 204–208 (2001). https://doi.org/10.1006/jssc.2000.9152
Bora, T., Ravi, S.: Effect of Ce doping on the magnetic properties of LaCrO3. Phys. B Condens. Matter. 448, 233–236 (2014). https://doi.org/10.1016/j.physb.2014.03.044
Vittal, B., Rao, G.N., Chen, J.W., Babu, D.S.: Relaxor ferroelectric like giant permittivity in PrCrO3 semiconductor ceramics. Mater. Chem. Phys. 126, 918–921 (2011). https://doi.org/10.1016/j.matchemphys.2010.12.013
Wang, Y., Zhu, J., Yang, X., Lu, L., Wang, X.: Preparation of NdCrO3 nanoparticles nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate by DSC/TG-MS. Thermochim. Acta. 437, 106–109 (2005). https://doi.org/10.1016/j.tca.2005.06.027
Deng, G., Chen, Y., Tao, M., Wu, C., Shen, X., Yang, H., Liu, M.: Study of the electrochemical hydrogen storage properties of the proton-conductive perovskite-type oxide LaCrO3 as negative electrode for Ni/MH batteries. Electrochim. Acta. 55, 884–886 (2010). https://doi.org/10.1016/j.electacta.2009.06.071
abdel all Ibrahim, S.M.: Hydrogen storage in proton-conductive perovskite-type oxides and their application. Korean J. Chem. Eng. 31, 1792–1797 (2014). https://doi.org/10.1007/s11814-014-0081-8
Yin, S., Jain, M.: Enhancement in magnetocaloric properties of holmium chromite by gadolinium substitution. 43906, (2016). https://doi.org/10.1063/1.4959253
Saha, S., Chanda, S., Dutta, A.: Dielectric relaxation and phonon modes of NdCrO3 nanostructure. 553–563 (2014). https://doi.org/10.1007/s10971-013-3256-6
Pr, L., Yoshii, K., Nakamura, A., Yoshii K., Nakamura, A.: 450 (2000) 447–450. https://doi.org/10.1006/jssc.2000.8943.
Jiang, S.P., He, T., Shen, Y., Liu, M.: Preparation, electrical conductivity, and thermal expansion behavior of dense Nd1-xCaxCrO3 solid solutions. 2264, 2259–2264 (2009). https://doi.org/10.1111/j.1551-2916.2009.03196.x
Zhang, Y., Yao, C., Fan, Y., Zhou, M.: One-step hydrothermal synthesis, characterization and magnetic properties of orthorhombic PrCrO3 cubic particles, Elsevier Ltd. 59, 387–393 (2014). https://doi.org/10.1016/j.materresbull.2014.07.049
Inagaki, M., Yamamoto, O., Hirohara, M.: Synthesis of LaCrO3 from complex precipitation and its electrical conductivity. J. Ceram. Soc. Jpn. 98, 675–678 (1990). https://doi.org/10.2109/jcersj.98.675
Yin, L.H., Yang, J., Kan, X.C., Song, W.H., Dai, J.M., Sun, Y.P., Yin, L.H., Yang, J., Kan, X.C., Song, W.H., Dai, J.M., Sun, Y.P.: Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal Giant magnetocaloric effect and temperature induced magnetization jump in GdCrO3 single crystal. 133901, 0–8 (2015). https://doi.org/10.1063/1.4916701
Kumar, S., Coondoo, I., Rao, A.: Impact of low level praseodymium substitution on the magnetic properties of YCrO3 orthochromites. Phys. B Condens. Matter. 510, 104 (2017). https://doi.org/10.1016/j.physb.2017.01.003
Yoshii, K.: Magnetization reversal in TmCrO3. Mater. Res. Bull. 47, 3243–3248 (2012). https://doi.org/10.1016/j.materresbull.2012.08.005
Yoshii, K., Nakamura, A., Ishii, Y., Morii, Y.: Magnetic properties of La1-xPRxCRO3. J. Solid State Chem. 162, 84–89 (2001). https://doi.org/10.1006/jssc.2001.9351
Balli, M., Fruchart, D., Gignoux, D.: Optimization of La(Fe,Co)13-xSix based compounds for magnetic refrigeration. J. Phys. Condens. Matter. 19, 236230 (2007). https://doi.org/10.1088/0953-8984/19/23/236230
Tegus, O., Dagula, O., Bruck, E., Zhang, L., de Boer, F.R., Buschow, K.H.J.: Magnetic and magneto-caloric properties of Tb5Ge2Si2. J. Appl. Phys. 91, 8534–8536 (2002). https://doi.org/10.1063/1.1450830
Skini, R., Omri, A., Khlifi, M., Dhahri, E., Hlil, E.K.: Large magnetocaloric effect in lanthanum-deficiency manganites La 0.8-x□xCa0.2MnO3 (0.00≤x≤0.20) with a first-order magnetic phase transition. J. Magn. Magn. Mater. 364, 5–10 (2014). https://doi.org/10.1016/j.jmmm.2014.04.009
El Maalam, K., Fkhar, L., Hamedoun, M., Mahmoud, A., Boschini, F., Hlil, E.K., Benyoussef, A., Mounkachi, O.: Magnetocaloric properties of zinc-nickel ferrites around room temperature. J. Supercond. Nov. Magn. 30, 2–6 (2017). https://doi.org/10.1007/s10948-016-3961-9.
Search, H., Journals, C., Contact, A., Iopscience, M., Address, I.P.: Magnetoelectric coupling and exchange bias effects in multiferroic NdCrO3. 166005, 28, 166005 (n.d.). https://doi.org/10.1088/0953-8984/28/16/166005
Oliveira, G.N.P., Machado, P., Pires, A.L., Pereira, A.M., Araújo, J.P., Lopes, A.M.L.: Magnetocaloric effect and refrigerant capacity in polycrystalline YCrO3. J. Phys. Chem. Solids. 91, 1–7 (2015). https://doi.org/10.1016/j.jpcs.2015.12.012.
Mcdannald, A., Kuna, L., Jain, M.: Magnetic and magnetocaloric properties of bulk dysprosium chromite. J. Appl Phys. 114. https://doi.org/10.1063/1.4821016
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551
Kishi, H., Kohzu, N., Sugino, J., Ohsato, H. Iguchi, Y., Okuda, T.: The effect of rare-earth (La, Sm, Dy, Ho, and Er ) and Mg on the microstructure in BaTiO. J. Eur. Ceram. Soc. 19, 1043–1046 (1999). https://doi.org/10.1016/S0955-2219(98)00370-7
Sheel, H.J., Marti, M.T.W., Fischer, P., Altorfer, F.: Crystal structures and phase transitions of orthorhombic and rhombohedral RGaO3 (R=La,Pr,Nd) investigated by neutron powder diffraction. J. Phys. Condens. Matter. 6, 127–135 (n.d.)
Athawale, A.A., Desai, P.A.: Silver doped lanthanum chromites by microwave combustion method. 37, 3037–3043 (2011). https://doi.org/10.1016/j.ceramint.2011.05.008
Khetre, S.R.B.M., Khilare, C.J., Shivankar, V.S.: Preparation and study of acetone gas sensing behavior of nanocrystalline LaCrO3 thick film, sensors & tranducers journal 137, 165–175 (2012)
Sastre, E., Rida, K., Benabbas, A., Bouremmad, F., Pen, M.A.: Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol–gel derived lanthanum chromite perovskite. 327, 173–179 (2007). https://doi.org/10.1016/j.apcata.2007.05.015
Kumar, P., Singh, R.K., Sinha, A.S.K., Singh, P.: Effect of isovalent ion substitution on electrical and dielectric properties. J. Alloys Compd. 576, 154–160 (2013). https://doi.org/10.1016/j.jallcom.2013.04.118
Huang, L.W.S.S., Zerihun, G., Tian, Z., Yuan, S., Gong, G., Yin, C.: Magnetic exchange bias and high-temperature giant dielectric response in SmCrO3 ceramics. Ceram. Int. 40, 13937 (2014). https://doi.org/10.1016/j.ceramint.2014.05.115.
Qian, X., Chen, L., Cao, S., Zhang, J.: A study of the spin reorientation with t-e orbital hybridization in SmCrO3. Solid State Commun. 195, 21–25 (2014). https://doi.org/10.1016/j.ssc.2014.06.019
Banerjee, S.K.: On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964). https://doi.org/10.1016/0031-9163(64)91158-8
Poodar, P., Gupta, P.: Study of magnetic and thermal property of SmCrO3 polycrystallites. (n.d.). https://doi.org/10.1039/C6RA17203B
Chen, W., Nie, L.Y., Zhong, W., Shi, Y.J., Hu, J.J., Li, A.J., Du, Y.W.: Magnetocaloric effect in Nd doped perovskite La0.7-xNd xBa0.3MnO3 polycrystalline near room temperature. J. Alloys Compd. 395, 23–25 (2005). https://doi.org/10.1016/j.jallcom.2004.11.025
Biswal, H., Singh, V., Nath, R., Angappane, S., Sahu, J.R.: Magnetic and magnetocaloric properties of LaCr1-xMnxO3 (x = 0, 0.05, 0.1) Hrudananda. Ceram. Int. 3, (2019). https://doi.org/10.1016/j.ceramint.2019.07.311
Panwar, N., Coondoo, I., Kumar, S., Kumar, S., Vasundhara, M., Rao, A.: Structural, electrical, optical and magnetic properties of SmCrO3 chromites: influence of Gd and Mn co-doping. J. Alloys Compd. 792, 1122 (2019). https://doi.org/10.1016/j.jallcom.2019.04.088
Bora, T., Ravi, S.: Bipolar switching of magnetization and tunable exchange bias in NdCr1 − x Mn x O3 (x = 0.0–0.30). J. Appl. Phys. 3, 063901 (2014). https://doi.org/10.1063/1.4891682.
Kumar, S., Coondoo, I., Vasundhara, M., Patra, A.K., Kholkin, A.L., Panwar, N.: Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites. J. Appl. Phys. 21, 043907 (2017). https://doi.org/10.1063/1.4974737.
Wang, S., Wu, X., Yuan, L., Zhang, C., Cui, X., Lu, D.: Hydrothermal synthesis, morphology, structure and magnetic properties of perovskite structure LaCr1-xMnxO3 (x=0.1, 0.2 and 0.3). CrystEngComm. 20, 3034 (2018). https://doi.org/10.1039/C8CE00421H
