Structural Characterization by Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from the Nuclear Pore Complex
Tài liệu tham khảo
Gavin, 2006, Proteome survey reveals modularity of the yeast cell machinery, Nature, 440, 631, 10.1038/nature04532
Krogan, 2006, Global landscape of protein complexes in the yeast Saccharomyces cerevisiae, Nature, 440, 637, 10.1038/nature04670
Malovannaya, 2011, Analysis of the human endogenous coregulator complexome, Cell, 145, 787, 10.1016/j.cell.2011.05.006
Robinson, 2007, The molecular sociology of the cell, Nature, 450, 973, 10.1038/nature06523
Alber, 2008, Integrating diverse data for structure determination of macromolecular assemblies, Annu. Rev. Biochem, 77, 443, 10.1146/annurev.biochem.77.060407.135530
Ward, 2013, Biochemistry. Integrative structural biology, Science, 339, 913, 10.1126/science.1228565
Alber, 2007, Determining the architectures of macromolecular assemblies, Nature, 450, 683, 10.1038/nature06404
Alber, 2007, The molecular architecture of the nuclear pore complex, Nature, 450, 695, 10.1038/nature06405
Duan, 2010, A three-dimensional model of the yeast genome, Nature, 465, 363, 10.1038/nature08973
Boura, 2011, Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy, Proc. Natl. Acad. Sci. U.S.A, 108, 9437, 10.1073/pnas.1101763108
Kalhor, 2012, Genome architectures revealed by tethered chromosome conformation capture and population-based modeling, Nat. Biotechnol, 30, 90, 10.1038/nbt.2057
Lander, 2012, Complete subunit architecture of the proteasome regulatory particle, Nature, 482, 186, 10.1038/nature10774
Lasker, 2012, Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach, Proc. Natl. Acad. Sci. U.S.A, 109, 1380, 10.1073/pnas.1120559109
Fernandez-Martinez, 2012, Structure-function mapping of a heptameric module in the nuclear pore complex, J. Cell Biol, 196, 419, 10.1083/jcb.201109008
Tosi, 2013, Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex, Cell, 154, 1207, 10.1016/j.cell.2013.08.016
Greber, 2014, Architecture of the large subunit of the mammalian mitochondrial ribosome, Nature, 505, 515, 10.1038/nature12890
Cohen, 2001, Mass spectrometry as a tool for protein crystallography, Annu. Rev. Biophys. Biomol. Struct, 30, 67, 10.1146/annurev.biophys.30.1.67
Young, 2000, High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry, Proc. Natl. Acad. Sci. U.S.A, 97, 5802, 10.1073/pnas.090099097
Chen, 2010, Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry, EMBO J, 29, 717, 10.1038/emboj.2009.401
Herzog, 2012, Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry, Science, 337, 1348, 10.1126/science.1221483
Leitner, 2010, Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics, Mol. Cell. Proteomics, 9, 1634, 10.1074/mcp.R000001-MCP201
Sinz, 2006, Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions, Mass Spectrom. Rev, 25, 663, 10.1002/mas.20082
Trnka, 2014, Matching cross-linked peptide spectra: only as good as the worse identification, Mol. Cell. Proteomics, 13, 420, 10.1074/mcp.M113.034009
Kao, 2011, Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes, Mol. Cell. Proteomics, 10, 10.1074/mcp.M110.002212
Weisbrod, 2013, In vivo protein interaction network identified with a novel real-time cross-linked peptide identification strategy, J. Proteome Res, 12, 1569, 10.1021/pr3011638
Ghaemmaghami, 2003, Global analysis of protein expression in yeast, Nature, 425, 737, 10.1038/nature02046
Beck, 2011, The quantitative proteome of a human cell line, Mol. Syst. Biol, 7, 549, 10.1038/msb.2011.82
Leitner, 2014, Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes, Proc. Natl. Acad. Sci. U.S.A, 111, 9455, 10.1073/pnas.1320298111
Rout, 2000, The yeast nuclear pore complex: composition, architecture, and transport mechanism, J. Cell Biol, 635, 10.1083/jcb.148.4.635
Lutzmann, 2002, Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins, EMBO J, 21, 387, 10.1093/emboj/21.3.387
Brohawn, 2008, Structural evidence for common ancestry of the nuclear pore complex and vesicle coats, Science, 322, 1369, 10.1126/science.1165886
Devos, 2004, Components of coated vesicles and nuclear pore complexes share a common molecular architecture, PLoS Biol, 2, e380, 10.1371/journal.pbio.0020380
Bilokapic, 2012, 3D ultrastructure of the nuclear pore complex, Curr. Opin. Cell Biol, 24, 86, 10.1016/j.ceb.2011.12.011
Hoelz, 2011, The structure of the nuclear pore complex, Annu. Rev. Biochem, 80, 613, 10.1146/annurev-biochem-060109-151030
Bui, 2013, Integrated structural analysis of the human nuclear pore complex scaffold, Cell, 155, 1233, 10.1016/j.cell.2013.10.055
Kampmann, 2009, Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex, Nat. Struct. Mol. Biol, 16, 782, 10.1038/nsmb.1618
Thierbach, 2013, Protein interfaces of the conserved Nup84 complex from Chaetomium thermophilum shown by crosslinking mass spectrometry and electron microscopy, Structure, 21, 1672, 10.1016/j.str.2013.07.004
Velazquez-Muriel, 2012, Assembly of macromolecular complexes by satisfaction of spatial restraints from electron microscopy images, Proc. Natl. Acad. Sci. U.S.A, 109, 18821, 10.1073/pnas.1216549109
Olsen, 2007, Higher-energy C-trap dissociation for peptide modification analysis, Nat. Methods, 4, 709, 10.1038/nmeth1060
Yang, 2012, Identification of cross-linked peptides from complex samples, Nat. Methods, 9, 904, 10.1038/nmeth.2099
Qin, 1995, Preferential fragmentation of protonated gas-phase peptide ions adjacent to acidic amino-acid-residues, J. Am. Chem. Soc, 117, 5411, 10.1021/ja00124a045
Michalski, 2012, A systematic investigation into the nature of tryptic HCD spectra, J. Proteome Res, 11, 5479, 10.1021/pr3007045
Lasker, 2010, Integrative structure modeling of macromolecular assemblies from proteomics data, Mol. Cell. Proteomics, 9, 1689, 10.1074/mcp.R110.000067
Russel, 2012, Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies, PLoS Biol, 10, e1001244, 10.1371/journal.pbio.1001244
Berke, 2004, Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex, J. Cell Biol, 167, 591, 10.1083/jcb.200408109
Whittle, 2009, Architectural nucleoporins Nup157/170 and Nup133 are structurally related and descend from a second ancestral element, J. Biol. Chem, 284, 28442, 10.1074/jbc.M109.023580
Boehmer, 2008, Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex, Mol. Cell, 30, 721, 10.1016/j.molcel.2008.04.022
Sampathkumar, 2011, Structure of the C-terminal domain of Saccharomyces cerevisiae Nup133, a component of the nuclear pore complex, Proteins, 79, 1672, 10.1002/prot.22973
Brohawn, 2009, Molecular architecture of the Nup84-Nup145C-Sec13 edge element in the nuclear pore complex lattice, Nat. Struct. Mol. Biol, 16, 1173, 10.1038/nsmb.1713
Nagy, 2009, Structure of a trimeric nucleoporin complex reveals alternate oligomerization states, Proc. Natl. Acad. Sci. U.S.A, 106, 17693, 10.1073/pnas.0909373106
Seo, 2009, Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex, Proc. Natl. Acad. Sci. U.S.A, 106, 14281, 10.1073/pnas.0907453106
Leksa, 2009, The structure of the scaffold nucleoporin Nup120 reveals a new and unexpected domain architecture, Structure, 17, 1082, 10.1016/j.str.2009.06.003
Debler, 2008, A fence-like coat for the nuclear pore membrane, Mol. Cell, 32, 815, 10.1016/j.molcel.2008.12.001
Fath, 2007, Structure and organization of coat proteins in the COPII cage, Cell, 129, 1325, 10.1016/j.cell.2007.05.036
Jeudy, 2007, Crystal structure of nucleoporin Nic96 reveals a novel, intricate helical domain architecture, J. Biol. Chem, 282, 34904, 10.1074/jbc.M705479200
Lee, 2013, Crystal structure and versatile functional roles of the COP9 signalosome subunit 1, Proc. Natl. Acad. Sci. U.S.A, 110, 11845, 10.1073/pnas.1302418110
Soding, 2005, Protein homology detection by HMM-HMM comparison, Bioinformatics, 21, 951, 10.1093/bioinformatics/bti125
Soding, 2005, The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res, 33, W244, 10.1093/nar/gki408
Jones, 1999, Protein secondary structure prediction based on position-specific scoring matrices, J. Mol. Biol, 292, 195, 10.1006/jmbi.1999.3091
Buchan, 2013, Scalable web services for the PSIPRED Protein Analysis Workbench, Nucleic Acids Res, 41, W349, 10.1093/nar/gkt381
Ward, 2004, The DISOPRED server for the prediction of protein disorder, Bioinformatics, 20, 2138, 10.1093/bioinformatics/bth195
Sali, 1993, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol, 234, 779, 10.1006/jmbi.1993.1626
Erzberger, 2014, Molecular architecture of the 40S-eIF1-eIF3 Translation Initiation Complex, Cell, 158, 1123, 10.1016/j.cell.2014.07.044
Shen, 2006, Statistical potential for assessment and prediction of protein structures, Protein Sci, 15, 2507, 10.1110/ps.062416606
Schneidman-Duhovny, 2012, A method for integrative structure determination of protein-protein complexes, Bioinformatics, 28, 3282, 10.1093/bioinformatics/bts628
Rieping, 2005, Inferential structure determination, Science, 309, 303, 10.1126/science.1110428
Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graphics, 14, 33, 10.1016/0263-7855(96)00018-5
Heyer, 1999, Exploring expression data: identification and analysis of coexpressed genes, Genome Res, 9, 1106, 10.1101/gr.9.11.1106
Levitt, 1983, Molecular dynamics of native protein. II. Analysis and nature of motion, J. Mol. Biol, 168, 621, 10.1016/S0022-2836(83)80306-4
Oeffinger, 2007, Comprehensive analysis of diverse ribonucleoprotein complexes, Nat. Methods, 4, 951, 10.1038/nmeth1101
Leitner, 2012, Expanding the chemical cross-linking toolbox by the use of multiple proteases and enrichment by size exclusion chromatography, Mol. Cell. Proteomics, 11, 10.1074/mcp.M111.014126
Merkley, 2014, Distance restraints from crosslinking mass spectrometry: mining a molecular dynamics simulation database to evaluate lysine-lysine distances, Protein Sci, 23, 747, 10.1002/pro.2458
Hsia, 2007, Architecture of a coat for the nuclear pore membrane, Cell, 131, 1313, 10.1016/j.cell.2007.11.038
Algret, 2014, Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway, Mol. Cell. Proteomics, 10.1074/mcp.M114.039388
Yang, 1998, Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications, Mol. Cell, 1, 223, 10.1016/S1097-2765(00)80023-4
Sampathkumar, 2013, Structure, dynamics, evolution, and function of a major scaffold component in the nuclear pore complex, Structure, 21, 560, 10.1016/j.str.2013.02.005
Brohawn, 2009, The nuclear pore complex has entered the atomic age, Structure, 17, 1156, 10.1016/j.str.2009.07.014
Lee, 2010, Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats, Cell, 142, 123, 10.1016/j.cell.2010.05.030
Devos, 2006, Simple fold composition and modular architecture of the nuclear pore complex, Proc. Natl. Acad. Sci. U.S.A, 103, 2172, 10.1073/pnas.0506345103
Field, 2011, Evolution: on a bender—BARs, ESCRTs, COPs, and finally getting your coat, J. Cell Biol, 193, 963, 10.1083/jcb.201102042
Dokudovskaya, 2011, A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae, Mol. Cell. Proteomics, 10, 10.1074/mcp.M110.006478
van Dam, 2013, Evolution of modular intraflagellar transport from a coatomer-like progenitor, Proc. Natl. Acad. Sci. U.S.A, 110, 6943, 10.1073/pnas.1221011110
Faini, 2013, Vesicle coats: structure, function, and general principles of assembly, Trends Cell Biol, 23, 279, 10.1016/j.tcb.2013.01.005
Fotin, 2004, Molecular model for a complete clathrin lattice from electron cryomicroscopy, Nature, 432, 573, 10.1038/nature03079
Siniossoglou, 2000, Structure and assembly of the Nup84p complex, J. Cell Biol, 149, 41, 10.1083/jcb.149.1.41
Leksa, 2010, Membrane-coating lattice scaffolds in the nuclear pore and vesicle coats: commonalities, differences, challenges, Nucleus, 1, 314, 10.4161/nucl.1.4.11798
Hirst, 2014, Characterization of TSET, an ancient and widespread membrane trafficking complex, eLife, 3, e02866, 10.7554/eLife.02866
Drin, 2007, A general amphipathic alpha-helical motif for sensing membrane curvature, Nat. Struct. Mol. Biol, 14, 138, 10.1038/nsmb1194
Drin, 2010, Amphipathic helices and membrane curvature, FEBS Lett, 584, 1840, 10.1016/j.febslet.2009.10.022
Akey, 1993, Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy, J. Cell Biol, 122, 1, 10.1083/jcb.122.1.1
Kim, 2014, Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex, Mol. Cell. Proteomics, 10.1074/mcp.M114.040915