Structural, Bioinformatic, and In Vivo Analyses of Two Treponema pallidum Lipoproteins Reveal a Unique TRAP Transporter
Tài liệu tham khảo
Fraser, 1998, Complete genome sequence of Treponema pallidum, the syphilis spirochete, Science, 281, 375, 10.1126/science.281.5375.375
Norris, 1993, Polypeptides of Treponema pallidum: progress towared understanding their structural, functional, and immunologic roles, Microbiol. Rev., 57, 750, 10.1128/MMBR.57.3.750-779.1993
Davidson, 2007, ABC transporters: how small machines do a big job, Trends Microbiol., 15, 448, 10.1016/j.tim.2007.09.005
Abramson, 2009, Structure and function of Na+-symporters with inverted repeats, Curr. Opin. Struct. Biol., 19, 425, 10.1016/j.sbi.2009.06.002
Kelly, 2001, The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea, FEMS Microbiol. Rev., 25, 405, 10.1111/j.1574-6976.2001.tb00584.x
Forward, 1997, TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria, J. Bacteriol., 179, 5482, 10.1128/jb.179.17.5482-5493.1997
Shaw, 1991, Purification, characterization and nucleotide sequence of the periplasmic C4-dicarboxylate-binding protein (DctP) from Rhodobacter capsulatus, Mol. Microbiol., 5, 3055, 10.1111/j.1365-2958.1991.tb01865.x
Mulligan, 2009, The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter, Proc. Natl Acad. Sci. USA, 106, 1778, 10.1073/pnas.0809979106
Fischer, 2010, Caught in a TRAP: substrate-binding proteins in secondary transport, Trends Microbiol., 18, 471, 10.1016/j.tim.2010.06.009
Winnen, 2003, The tripartite tricarboxylate transporter (TTT) family, Res. Microbiol., 154, 457, 10.1016/S0923-2508(03)00126-8
Marchler-Bauer, 2011, CDD: a Conserved Domain Database for the functional annotation of proteins, Nucleic Acids Res., 39, D225, 10.1093/nar/gkq1189
Saïd-Salim, 2006, Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis, Mol. Microbiol., 62, 1251, 10.1111/j.1365-2958.2006.05455.x
Deka, 2007, Crystal structure of the Tp34 (TP0971) lipoprotein of Treponema pallidum: implications of its metal-bound state and affinity for human lactoferrin, J. Biol. Chem., 282, 5944, 10.1074/jbc.M610215200
Deka, 2006, The PnrA (Tp0319; TmpC) lipoprotein represents a new family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC)-like operon in Treponema pallidum, J. Biol. Chem., 281, 8072, 10.1074/jbc.M511405200
Deka, 2002, Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein, J. Biol. Chem., 277, 41857, 10.1074/jbc.M207402200
Machius, 2007, Structural and biochemical basis for polyamine binding to the Tp0655 lipoprotein of Treponema pallidum: putative role for Tp0655 (TpPotD) as a polyamine receptor, J. Mol. Biol., 373, 681, 10.1016/j.jmb.2007.08.018
D'Andrea, 2003, TPR proteins: the versatile helix, Trends Biochem. Sci., 28, 655, 10.1016/j.tibs.2003.10.007
Sampathkumar, 2008, Structural insights into the recognition of peroxisomal targeting signal 1 by Trypanosoma brucei peroxin 5, J. Mol. Biol., 381, 867, 10.1016/j.jmb.2008.05.089
Severi, 2005, Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter, Mol. Microbiol., 58, 1173, 10.1111/j.1365-2958.2005.04901.x
Setubal, 2006, Lipoprotein computational prediction in spirochaetal genomes, Microbiology, 152, 113, 10.1099/mic.0.28317-0
McPherson, 1986, An experiment regarding crystallization of soluble proteins in the presence of β-octyl glucoside, J. Biol. Chem., 261, 1969, 10.1016/S0021-9258(17)36038-6
Petřek, 2006, CAVER: a new tool to explore routes from protein clefts, pockets and cavities, BMC Bioinformatics, 7, 316, 10.1186/1471-2105-7-316
Löwe, 1995, Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution, Science, 268, 533, 10.1126/science.7725097
Lima, 1994, Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I, Nature, 367, 138, 10.1038/367138a0
Tajkhorshid, 2002, Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science, 296, 525, 10.1126/science.1067778
Sui, 2001, Structural basis of water-specific transport through the AQP1 water channel, Nature, 414, 872, 10.1038/414872a
Fu, 2000, Structure of a glycerol-conducting channel and the basis for its selectivity, Science, 290, 481, 10.1126/science.290.5491.481
Zeth, 2000, Crystal structure of Omp32, the anion-selective porin form Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 Å resolution, Structure, 8, 981, 10.1016/S0969-2126(00)00189-1
Holm, 2010, Dali server: conservation mapping in 3D, Nucleic Acids Res., 38, W545, 10.1093/nar/gkq366
Lim, 2007, Crystal structure of TTC0263, a thermophilic TPR protein from Thermus thermophilus HB27, Mol. Cell, 24, 27
Smith, 2004, Tetratricopeptide repeat cochaperones in steroid receptor complexes, Cell Stress Chaperones, 9, 109, 10.1379/CSC-31.1
Vodermaier, 2003, TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1, Curr. Biol., 13, 1459, 10.1016/S0960-9822(03)00581-5
Biegert, 2006, The MPI Bioinformatics Toolkit for protein sequence analysis, Nucleic Acids Res., 34, W335, 10.1093/nar/gkl217
Krissinel, 2007, Inference of macromolecular assemblies from crystalline state, J. Mol. Biol., 372, 774, 10.1016/j.jmb.2007.05.022
Müller, 2006, Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae, J. Biol. Chem., 281, 22212, 10.1074/jbc.M603463200
Cuneo, 2008, Structural analysis of a periplasmic binding protein in the tripartite ATP-independent transporter family reveals a tetrameric assembly that may have a role in ligand transport, J. Biol. Chem., 283, 32812, 10.1074/jbc.M803595200
Gonin, 2007, Crystal structures of an extracytoplasmic solute receptor from a TRAP transporter in its open and closed forms reveal a helix-swapped dimer requiring a cation for α-keto acid binding, BMC Struct. Biol., 7, 11, 10.1186/1472-6807-7-11
Tam, 1993, Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria, Microbiol. Rev., 57, 320, 10.1128/MMBR.57.2.320-346.1993
Johnston, 2008, Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019, J. Biol. Chem., 283, 855, 10.1074/jbc.M706603200
Holm, 2000, DaliLite workbench for protein structure comparison, Bioinformatics, 16, 566, 10.1093/bioinformatics/16.6.566
Akiyama, 2009, Crystal structure of a periplasmic substrate-binding protein in complex with calcium lactate, J. Mol. Biol., 392, 559, 10.1016/j.jmb.2009.07.043
Kuhlmann, 2008, 1.55 Å structure of the ectoine binding protein TeaA of the osmoregulated TRAP-transporter TeaABC from Halomonas elongata, Biochemistry, 47, 9457, 10.1021/bi8006719
Altschul, 1990, Basic local alignment search tool, J. Mol. Biol., 215, 403, 10.1016/S0022-2836(05)80360-2
Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389
Mulligan, 2007, Tripartite ATP-independent periplasmic transporters: application of a relational database for genome-wide analysis of transporter gene frequency and organization, J. Mol. Microbiol. Biotechnol., 12, 218, 10.1159/000099643
Stolp, 1965, Bacteriolysis, Ann. Rev. Microbiol., 19, 79, 10.1146/annurev.mi.19.100165.000455
Baer, 2004, Reclassification of salt-water Bdellovibrio sp. as Bacteriovorax marinus sp. nov. and Bacteriovorax litoralis sp. nov, Int. J. Syst. Evol. Microbiol., 54, 1011, 10.1099/ijs.0.02458-0
Oldham, 2007, Crystal structure of a catalytic intermediate of the maltose transporter, Nature, 450, 515, 10.1038/nature06264
Oldham, 2011, Crystal structure of the maltose transporter in a pretranslocation intermediate state, Science, 332, 1202, 10.1126/science.1200767
Schweikhard, 2010, Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of Halomonas elongata DSM 2581T, Biochemistry, 49, 2194, 10.1021/bi9017522
Malinverni, 2009, An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane, Proc. Natl Acad. Sci. USA, 106, 8009, 10.1073/pnas.0903229106
Schuck, 2000, Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling, Biophys. J., 78, 1606, 10.1016/S0006-3495(00)76713-0
Brautigam, 2011, Using Lamm-Equation modeling of sedimentation velocity data to determine the kinetic and thermodynamic properties of macromolecular interactions, Methods, 54, 4, 10.1016/j.ymeth.2010.12.029
Dam, 2005, Sedimentation velocity analysis of heterogeneous protein–protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s), Biophys. J., 89, 619, 10.1529/biophysj.105.059568
de la Torre, 2000, Calculation of hydrodynamic properties of globular proteins from their atomic-level structures, Biophys. J., 78, 719, 10.1016/S0006-3495(00)76630-6
Skare, 1993, Energy transduction between membranes: TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA, J. Biol. Chem., 268, 16302, 10.1016/S0021-9258(19)85421-2
Minor, 2006, HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes, Acta Crystallogr., Sect. D: Biol. Crystallogr., 62, 859, 10.1107/S0907444906019949
Schneider, 2002, Substructure solution with SHELXD, Acta Crystallogr., Sect. D: Biol. Crystallogr., 58, 1772, 10.1107/S0907444902011678
Otwinowski, Z. (1991). Maximum likelihood refinement of heavy atom parameters. Proceedings of the CCP4 Daresbury Study Weekend, 80–86.
Cowtan, 1998, Miscellaneous algorithms for density modification, Acta Crystallogr., Sect. D: Biol. Crystallogr., 54, 487, 10.1107/S0907444997011980
Terwilliger, 2003, Automated main-chain model building by template matching and iterative fragment extension, Acta Crystallogr., Sect. D: Biol. Crystallogr., 59, 38, 10.1107/S0907444902018036
Langer, 2008, Automated macromolecular model building for X-ray crystallography usng ARP/wARP version 7, Nat. Protocols., 3, 1171, 10.1038/nprot.2008.91
Jones, 1991, Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallogr., Sect. A: Found. Crystallogr., 47, 110, 10.1107/S0108767390010224
Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure determination, Acta Crystallogr., Sect. D: Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925
Read, 2001, Pushing the boundaries of molecular replacement with maximum likelihood, Acta Crystallogr., Sect. D: Biol. Crystallogr., 57, 1373, 10.1107/S0907444901012471
Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr., Sect. D: Biol. Crystallogr., 60, 2126, 10.1107/S0907444904019158
Baker, 2001, Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl Acad. Sci. USA, 98, 10037, 10.1073/pnas.181342398
Davis, 2007, MolProbity: all-atom contacts and structure validation for proteins and nucleic acids, Nucleic Acids Res., 35, W375, 10.1093/nar/gkm216
Pei, 2008, PROMALS3D: a tool for mulotiple sequence and structure alignment, Nucleic Acids Res., 36, 2295, 10.1093/nar/gkn072
Guindon, 2010, New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 59, 307, 10.1093/sysbio/syq010
Le, 2008, An improved general amino acid replacement matrix, Mol. Biol. Evol., 25, 1307, 10.1093/molbev/msn067