Structural Basis of the 9-Fold Symmetry of Centrioles
Tài liệu tham khảo
Azimzadeh, 2010, Building the centriole, Curr. Biol., 20, R816, 10.1016/j.cub.2010.08.010
Bach, 2007, Fast set-up of doxycycline-inducible protein expression in human cell lines with a single plasmid based on Epstein-Barr virus replication and the simple tetracycline repressor, FEBS J., 274, 783, 10.1111/j.1742-4658.2006.05623.x
Carvalho-Santos, 2010, Stepwise evolution of the centriole-assembly pathway, J. Cell Sci., 123, 1414, 10.1242/jcs.064931
Cavalier-Smith, 1974, Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii, J. Cell Sci., 16, 529, 10.1242/jcs.16.3.529
Culver, 2009, The two SAS-6 homologs in Tetrahymena thermophila have distinct functions in basal body assembly, Mol. Biol. Cell, 20, 1865, 10.1091/mbc.E08-08-0838
Dammermann, 2004, Centriole assembly requires both centriolar and pericentriolar material proteins, Dev. Cell, 7, 815, 10.1016/j.devcel.2004.10.015
Dammermann, 2008, SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules, J. Cell Biol., 180, 771, 10.1083/jcb.200709102
Delattre, 2004, Centriolar SAS-5 is required for centrosome duplication in C. elegans, Nat. Cell Biol., 6, 656, 10.1038/ncb1146
Dirksen, 1991, Centriole and basal body formation during ciliogenesis revisited, Biol. Cell, 72, 31, 10.1016/0248-4900(91)90075-X
Fowler, 1983, Preparation of single molecules and supramolecular complexes for high-resolution metal shadowing, J. Ultrastruct. Res., 83, 319, 10.1016/S0022-5320(83)90139-9
Gavin, 1984, In vitro reassembly of basal body components, J. Cell Sci., 66, 147, 10.1242/jcs.66.1.147
Gopalakrishnan, 2010, Self-assembling SAS-6 multimer is a core centriole building block, J. Biol. Chem., 285, 8759, 10.1074/jbc.M109.092627
Guichard, 2010, Procentriole assembly revealed by cryo-electron tomography, EMBO J., 29, 1565, 10.1038/emboj.2010.45
Hiraki, 2007, Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole, Curr. Biol., 17, 1778, 10.1016/j.cub.2007.09.021
Junop, 2000, Crystal structure of the Xrcc4 DNA repair protein and implications for end joining, EMBO J., 19, 5962, 10.1093/emboj/19.22.5962
Kemp, 2004, Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2, Dev. Cell, 6, 511, 10.1016/S1534-5807(04)00066-8
Khodjakov, 2002, De novo formation of centrosomes in vertebrate cells arrested during S phase, J. Cell Biol., 158, 1171, 10.1083/jcb.200205102
Kilburn, 2007, New Tetrahymena basal body protein components identify basal body domain structure, J. Cell. Biol., 178, 905, 10.1083/jcb.200703109
Kirkham, 2003, SAS-4 is a C. elegans centriolar protein that controls centrosome size, Cell, 112, 575, 10.1016/S0092-8674(03)00117-X
Kitagawa, 2009, Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos, Dev. Cell, 17, 900, 10.1016/j.devcel.2009.11.002
Kleylein-Sohn, 2007, Plk4-induced centriole biogenesis in human cells, Dev. Cell, 13, 190, 10.1016/j.devcel.2007.07.002
Leidel, 2003, SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle, Dev. Cell, 4, 431, 10.1016/S1534-5807(03)00062-5
Leidel, 2005, SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells, Nat. Cell Biol., 7, 115, 10.1038/ncb1220
Loncarek, 2009, Ab ovo or de novo? Mechanisms of centriole duplication, Mol. Cells, 27, 135, 10.1007/s10059-009-0017-z
Maeda, 2001, Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi, Curr. Biol., 11, 171, 10.1016/S0960-9822(01)00052-5
Marshall, 2000, Are there nucleic acids in the centrosome?, Curr. Top. Dev. Biol., 49, 187, 10.1016/S0070-2153(99)49009-X
Nakazawa, 2007, SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole, Curr. Biol., 17, 2169, 10.1016/j.cub.2007.11.046
Nigg, 2009, Centrioles, centrosomes, and cilia in health and disease, Cell, 139, 663, 10.1016/j.cell.2009.10.036
O'Connell, 2001, The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo, Cell, 105, 547, 10.1016/S0092-8674(01)00338-5
Pelletier, 2004, The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication, Curr. Biol., 14, 863, 10.1016/j.cub.2004.04.012
Pelletier, 2006, Centriole assembly in Caenorhabditis elegans, Nature, 444, 619, 10.1038/nature05318
Rodrigues-Martins, 2007, DSAS-6 organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly, Curr. Biol., 17, 1465, 10.1016/j.cub.2007.07.034
Schuck, 2000, Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling, Biophys. J., 78, 1606, 10.1016/S0006-3495(00)76713-0
Steinmetz, 1998, A distinct 14 residue site triggers coiled-coil formation in cortexillin I, EMBO J., 17, 1883, 10.1093/emboj/17.7.1883
Stevens, 2010, DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement, Dev. Cell, 19, 913, 10.1016/j.devcel.2010.11.010
Strnad, 2008, Mechanisms of procentriole formation, Trends Cell Biol., 18, 389, 10.1016/j.tcb.2008.06.004
Strnad, 2007, Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle, Dev. Cell, 13, 203, 10.1016/j.devcel.2007.07.004
Yabe, 2007, The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication, Dev. Biol., 312, 44, 10.1016/j.ydbio.2007.08.054
Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954.
Bach, M., Grigat, S., Pawlik, B., Fork, C., Utermöhlen, O., Pal, S., Banczyk, D., Lazar, A., Schömig, E., and Gründemann, D. (2007). Fast set-up of doxycycline-inducible protein expression in human cell lines with a single plasmid based on Epstein-Barr virus replication and the simple tetracycline repressor. FEBS J. 274, 783–790.
Bingel-Erlenmeyer, R., Olieric, V., Grimshaw, J.P.A., Gabadinho, J., Wang, X., Ebner, S.G., Isenegger, A., Schneider, R., Schneider, J., Glettig, W., et al. The SLS crystallization platform at beam-line X06DA - a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst. Growth Des., in press.
Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S.M., and Bricogne, G. (2004). Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221.
Chen, V.B., Arendall, W.B., III, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21.
Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., Murray, L.W., Arendall, W.B., III, Snoeyink, J., Richardson, J.S., and Richardson, D.C. (2007). MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35 (Web Server issue), W375–W83.
DeLano, W.L. (2002). The PyMOL Molecular Graphics System (Palo Alto, CA: DeLano Scientific).
Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.
Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82.
Kabsch, W. (1993). Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800.
Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797.
McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674.
Olieric, N., Kuchen, M., Wagen, S., Sauter, M., Crone, S., Edmondson, S., Frey, D., Ostermeier, C., Steinmetz, M.O., and Jaussi, R. (2010). Automated seamless DNA co-transformation cloning with direct expression vectors applying positive or negative insert selection. BMC Biotechnol. 10, 56.
Sauter, N.K., Grosse-Kunstleve, R.W., and Adams, P.D. (2004). Robust indexing for automatic data collection. J. Appl. Crystallogr. 37, 399–409.
Terwilliger, T.C. (2000). Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972.