Structural Basis of the 9-Fold Symmetry of Centrioles

Cell - Tập 144 - Trang 364-375 - 2011
Daiju Kitagawa1, Ioannis Vakonakis2,3, Natacha Olieric4, Manuel Hilbert2,4, Debora Keller1, Vincent Olieric2, Miriam Bortfeld4, Michèle C. Erat3, Isabelle Flückiger1, Pierre Gönczy1, Michel O. Steinmetz4
1Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland
2Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
3Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
4Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Tài liệu tham khảo

Azimzadeh, 2010, Building the centriole, Curr. Biol., 20, R816, 10.1016/j.cub.2010.08.010 Bach, 2007, Fast set-up of doxycycline-inducible protein expression in human cell lines with a single plasmid based on Epstein-Barr virus replication and the simple tetracycline repressor, FEBS J., 274, 783, 10.1111/j.1742-4658.2006.05623.x Carvalho-Santos, 2010, Stepwise evolution of the centriole-assembly pathway, J. Cell Sci., 123, 1414, 10.1242/jcs.064931 Cavalier-Smith, 1974, Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii, J. Cell Sci., 16, 529, 10.1242/jcs.16.3.529 Culver, 2009, The two SAS-6 homologs in Tetrahymena thermophila have distinct functions in basal body assembly, Mol. Biol. Cell, 20, 1865, 10.1091/mbc.E08-08-0838 Dammermann, 2004, Centriole assembly requires both centriolar and pericentriolar material proteins, Dev. Cell, 7, 815, 10.1016/j.devcel.2004.10.015 Dammermann, 2008, SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules, J. Cell Biol., 180, 771, 10.1083/jcb.200709102 Delattre, 2004, Centriolar SAS-5 is required for centrosome duplication in C. elegans, Nat. Cell Biol., 6, 656, 10.1038/ncb1146 Dirksen, 1991, Centriole and basal body formation during ciliogenesis revisited, Biol. Cell, 72, 31, 10.1016/0248-4900(91)90075-X Fowler, 1983, Preparation of single molecules and supramolecular complexes for high-resolution metal shadowing, J. Ultrastruct. Res., 83, 319, 10.1016/S0022-5320(83)90139-9 Gavin, 1984, In vitro reassembly of basal body components, J. Cell Sci., 66, 147, 10.1242/jcs.66.1.147 Gopalakrishnan, 2010, Self-assembling SAS-6 multimer is a core centriole building block, J. Biol. Chem., 285, 8759, 10.1074/jbc.M109.092627 Guichard, 2010, Procentriole assembly revealed by cryo-electron tomography, EMBO J., 29, 1565, 10.1038/emboj.2010.45 Hiraki, 2007, Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole, Curr. Biol., 17, 1778, 10.1016/j.cub.2007.09.021 Junop, 2000, Crystal structure of the Xrcc4 DNA repair protein and implications for end joining, EMBO J., 19, 5962, 10.1093/emboj/19.22.5962 Kemp, 2004, Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2, Dev. Cell, 6, 511, 10.1016/S1534-5807(04)00066-8 Khodjakov, 2002, De novo formation of centrosomes in vertebrate cells arrested during S phase, J. Cell Biol., 158, 1171, 10.1083/jcb.200205102 Kilburn, 2007, New Tetrahymena basal body protein components identify basal body domain structure, J. Cell. Biol., 178, 905, 10.1083/jcb.200703109 Kirkham, 2003, SAS-4 is a C. elegans centriolar protein that controls centrosome size, Cell, 112, 575, 10.1016/S0092-8674(03)00117-X Kitagawa, 2009, Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos, Dev. Cell, 17, 900, 10.1016/j.devcel.2009.11.002 Kleylein-Sohn, 2007, Plk4-induced centriole biogenesis in human cells, Dev. Cell, 13, 190, 10.1016/j.devcel.2007.07.002 Leidel, 2003, SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle, Dev. Cell, 4, 431, 10.1016/S1534-5807(03)00062-5 Leidel, 2005, SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells, Nat. Cell Biol., 7, 115, 10.1038/ncb1220 Loncarek, 2009, Ab ovo or de novo? Mechanisms of centriole duplication, Mol. Cells, 27, 135, 10.1007/s10059-009-0017-z Maeda, 2001, Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi, Curr. Biol., 11, 171, 10.1016/S0960-9822(01)00052-5 Marshall, 2000, Are there nucleic acids in the centrosome?, Curr. Top. Dev. Biol., 49, 187, 10.1016/S0070-2153(99)49009-X Nakazawa, 2007, SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole, Curr. Biol., 17, 2169, 10.1016/j.cub.2007.11.046 Nigg, 2009, Centrioles, centrosomes, and cilia in health and disease, Cell, 139, 663, 10.1016/j.cell.2009.10.036 O'Connell, 2001, The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo, Cell, 105, 547, 10.1016/S0092-8674(01)00338-5 Pelletier, 2004, The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication, Curr. Biol., 14, 863, 10.1016/j.cub.2004.04.012 Pelletier, 2006, Centriole assembly in Caenorhabditis elegans, Nature, 444, 619, 10.1038/nature05318 Rodrigues-Martins, 2007, DSAS-6 organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly, Curr. Biol., 17, 1465, 10.1016/j.cub.2007.07.034 Schuck, 2000, Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling, Biophys. J., 78, 1606, 10.1016/S0006-3495(00)76713-0 Steinmetz, 1998, A distinct 14 residue site triggers coiled-coil formation in cortexillin I, EMBO J., 17, 1883, 10.1093/emboj/17.7.1883 Stevens, 2010, DSas-6 and Ana2 coassemble into tubules to promote centriole duplication and engagement, Dev. Cell, 19, 913, 10.1016/j.devcel.2010.11.010 Strnad, 2008, Mechanisms of procentriole formation, Trends Cell Biol., 18, 389, 10.1016/j.tcb.2008.06.004 Strnad, 2007, Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle, Dev. Cell, 13, 203, 10.1016/j.devcel.2007.07.004 Yabe, 2007, The zebrafish maternal-effect gene cellular atoll encodes the centriolar component sas-6 and defects in its paternal function promote whole genome duplication, Dev. Biol., 312, 44, 10.1016/j.ydbio.2007.08.054 Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954. Bach, M., Grigat, S., Pawlik, B., Fork, C., Utermöhlen, O., Pal, S., Banczyk, D., Lazar, A., Schömig, E., and Gründemann, D. (2007). Fast set-up of doxycycline-inducible protein expression in human cell lines with a single plasmid based on Epstein-Barr virus replication and the simple tetracycline repressor. FEBS J. 274, 783–790. Bingel-Erlenmeyer, R., Olieric, V., Grimshaw, J.P.A., Gabadinho, J., Wang, X., Ebner, S.G., Isenegger, A., Schneider, R., Schneider, J., Glettig, W., et al. The SLS crystallization platform at beam-line X06DA - a fully automated pipeline enabling in situ X-ray diffraction screening. Cryst. Growth Des., in press. Blanc, E., Roversi, P., Vonrhein, C., Flensburg, C., Lea, S.M., and Bricogne, G. (2004). Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221. Chen, V.B., Arendall, W.B., III, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21. Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., Murray, L.W., Arendall, W.B., III, Snoeyink, J., Richardson, J.S., and Richardson, D.C. (2007). MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35 (Web Server issue), W375–W83. DeLano, W.L. (2002). The PyMOL Molecular Graphics System (Palo Alto, CA: DeLano Scientific). Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132. Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82. Kabsch, W. (1993). Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800. Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674. Olieric, N., Kuchen, M., Wagen, S., Sauter, M., Crone, S., Edmondson, S., Frey, D., Ostermeier, C., Steinmetz, M.O., and Jaussi, R. (2010). Automated seamless DNA co-transformation cloning with direct expression vectors applying positive or negative insert selection. BMC Biotechnol. 10, 56. Sauter, N.K., Grosse-Kunstleve, R.W., and Adams, P.D. (2004). Robust indexing for automatic data collection. J. Appl. Crystallogr. 37, 399–409. Terwilliger, T.C. (2000). Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972.