Structural Basis of H+-Dependent Conformational Change in a Bacterial MATE Transporter
Tài liệu tham khảo
Adams, 2002, PHENIX: building new software for automated crystallographic structure determination, Acta Crystallogr. D Biol. Crystallogr., 58, 1948, 10.1107/S0907444902016657
Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925
Backmark, 2013, Fluorescent probe for high-throughput screening of membrane protein expression, Protein Sci., 22, 1124, 10.1002/pro.2297
Begum, 2005, Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1, Microbiol. Immunol., 49, 949, 10.1111/j.1348-0421.2005.tb03690.x
Blair, 2014, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol., 13, 42, 10.1038/nrmicro3380
Brown, 1999, The multidrug efflux protein NorM is a prototype of a new family of transporters, Mol. Microbiol., 31, 394, 10.1046/j.1365-2958.1999.01162.x
Caffrey, 2009, Crystallizing membrane proteins using lipidic mesophases, Nat. Protoc., 4, 706, 10.1038/nprot.2009.31
Claxton, 2018, Sodium and proton coupling in the conformational cycle of a MATE antiporter from Vibrio cholerae, Proc. Natl. Acad. Sci. U S A, 115, E6182, 10.1073/pnas.1802417115
Du, 2015, Structure, mechanism and cooperation of bacterial multidrug transporters, Curr. Opin. Struct. Biol., 33, 76, 10.1016/j.sbi.2015.07.015
Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr., 60, 2126, 10.1107/S0907444904019158
Emsley, 2010, Features and development of coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493
Evans, 2013, How good are my data and what is the resolution?, Acta Crystallogr. D Biol. Crystallogr., 69, 1204, 10.1107/S0907444913000061
Ficici, 2018, Broadly conserved Na+-binding site in the N-lobe of prokaryotic multidrug MATE transporters, Proc. Natl. Acad. Sci. U S A, 115, E6172, 10.1073/pnas.1802080115
He, 2004, An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa, J. Bacteriol., 186, 262, 10.1128/JB.186.1.262-265.2004
He, 2010, Structure of a cation-bound multidrug and toxic compound extrusion transporter, Nature, 467, 991, 10.1038/nature09408
Hipolito, 2012, Ribosomal production and in vitro selection of natural product-like peptidomimetics: the FIT and RaPID systems, Curr. Opin. Chem. Biol., 16, 196, 10.1016/j.cbpa.2012.02.014
Hipolito, 2013, A macrocyclic peptide that serves as a cocrystallization ligand and inhibits the function of a MATE family transporter, Molecules, 18, 10514, 10.3390/molecules180910514
Hirata, 2013, Achievement of protein micro-crystallography at SPring-8 beamline BL32XU, J. Phys. Conf. Ser., 425, 12002, 10.1088/1742-6596/425/1/012002
Jin, 2014, Multidrug transport protein NorM from Vibrio cholerae simultaneously couples to sodium- and proton-motive force, J. Biol. Chem., 289, 14624, 10.1074/jbc.M113.546770
Joosten, 2012, PDB_REDO: constructive validation, more than just looking for errors, Acta Crystallogr. D Biol. Crystallogr., 68, 484, 10.1107/S0907444911054515
Kaatz, 2005, Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein, Antimicrob. Agents Chemother., 49, 1857, 10.1128/AAC.49.5.1857-1864.2005
Kabsch, 2010, XDS, Acta Crystallogr. D Biol. Crystallogr., 66, 125, 10.1107/S0907444909047337
Kawate, 2006, Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins, Structure, 14, 673, 10.1016/j.str.2006.01.013
Kusakizako, 2016, LCP crystallization and X-ray diffraction analysis of VcmN, a MATE transporter from Vibrio cholerae, Acta Crystallogr. F Struct. Biol. Commun., 72, 552, 10.1107/S2053230X16008931
Lu, 2013, Structures of a Na+-coupled, substrate-bound MATE multidrug transporter, Proc. Natl. Acad. Sci. U S A, 110, 2099, 10.1073/pnas.1219901110
Lu, 2013, Structural insights into H+-coupled multidrug extrusion by a MATE transporter, Nat. Struct. Mol. Biol., 20, 1310, 10.1038/nsmb.2687
McAleese, 2005, A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline, Antimicrob. Agents Chemother., 49, 1865, 10.1128/AAC.49.5.1865-1871.2005
McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206
Miyauchi, 2017, Structural basis for xenobiotic extrusion by eukaryotic MATE transporter, Nat. Commun., 8, 1633, 10.1038/s41467-017-01541-0
Mousa, 2016, MATE transport of the E. coli-derived genotoxin colibactin, Nat. Microbiol., 1, 15009, 10.1038/nmicrobiol.2015.9
Nishima, 2016, Mechanisms for two-step proton transfer reactions in the outward-facing form of MATE transporter, Biophys. J., 110, 1346, 10.1016/j.bpj.2016.01.027
Olsson, 2011, PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions, J. Chem. Theory Comput., 7, 525, 10.1021/ct100578z
Omote, 2006, The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations, Trends Pharmacol. Sci., 27, 587, 10.1016/j.tips.2006.09.001
Radchenko, 2015, Structural basis for the blockade of MATE multidrug efflux pumps, Nat. Commun., 6, 7995, 10.1038/ncomms8995
Read, 2011, A new generation of crystallographic validation tools for the Protein Data Bank, Structure, 19, 1395, 10.1016/j.str.2011.08.006
Smirnova, 2009, Probing of the rates of alternating access in LacY with Trp fluorescence, Proc. Natl. Acad. Sci. U S A, 106, 21561, 10.1073/pnas.0911434106
Tanaka, 2013, Structural basis for the drug extrusion mechanism by a MATE multidrug transporter, Nature, 496, 247, 10.1038/nature12014
Tanaka, 2017, Crystal structure of a plant multidrug and toxic compound extrusion family protein, Structure, 25, 1455, 10.1016/j.str.2017.07.009
Winter, 2018, DIALS: implementation and evaluation of a new integration package, Acta Crystallogr. D Struct. Biol., 74, 85, 10.1107/S2059798317017235