Structural Basis of H+-Dependent Conformational Change in a Bacterial MATE Transporter

Structure - Tập 27 - Trang 293-301.e3 - 2019
Tsukasa Kusakizako1, Derek P. Claxton2, Yoshiki Tanaka3, Andrés D. Maturana4, Teruo Kuroda5, Ryuichiro Ishitani1, Hassane S. Mchaourab2, Osamu Nureki1
1Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
3Department of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
4Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
5Department of Microbiology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan

Tài liệu tham khảo

Adams, 2002, PHENIX: building new software for automated crystallographic structure determination, Acta Crystallogr. D Biol. Crystallogr., 58, 1948, 10.1107/S0907444902016657 Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925 Backmark, 2013, Fluorescent probe for high-throughput screening of membrane protein expression, Protein Sci., 22, 1124, 10.1002/pro.2297 Begum, 2005, Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1, Microbiol. Immunol., 49, 949, 10.1111/j.1348-0421.2005.tb03690.x Blair, 2014, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol., 13, 42, 10.1038/nrmicro3380 Brown, 1999, The multidrug efflux protein NorM is a prototype of a new family of transporters, Mol. Microbiol., 31, 394, 10.1046/j.1365-2958.1999.01162.x Caffrey, 2009, Crystallizing membrane proteins using lipidic mesophases, Nat. Protoc., 4, 706, 10.1038/nprot.2009.31 Claxton, 2018, Sodium and proton coupling in the conformational cycle of a MATE antiporter from Vibrio cholerae, Proc. Natl. Acad. Sci. U S A, 115, E6182, 10.1073/pnas.1802417115 Du, 2015, Structure, mechanism and cooperation of bacterial multidrug transporters, Curr. Opin. Struct. Biol., 33, 76, 10.1016/j.sbi.2015.07.015 Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr., 60, 2126, 10.1107/S0907444904019158 Emsley, 2010, Features and development of coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493 Evans, 2013, How good are my data and what is the resolution?, Acta Crystallogr. D Biol. Crystallogr., 69, 1204, 10.1107/S0907444913000061 Ficici, 2018, Broadly conserved Na+-binding site in the N-lobe of prokaryotic multidrug MATE transporters, Proc. Natl. Acad. Sci. U S A, 115, E6172, 10.1073/pnas.1802080115 He, 2004, An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa, J. Bacteriol., 186, 262, 10.1128/JB.186.1.262-265.2004 He, 2010, Structure of a cation-bound multidrug and toxic compound extrusion transporter, Nature, 467, 991, 10.1038/nature09408 Hipolito, 2012, Ribosomal production and in vitro selection of natural product-like peptidomimetics: the FIT and RaPID systems, Curr. Opin. Chem. Biol., 16, 196, 10.1016/j.cbpa.2012.02.014 Hipolito, 2013, A macrocyclic peptide that serves as a cocrystallization ligand and inhibits the function of a MATE family transporter, Molecules, 18, 10514, 10.3390/molecules180910514 Hirata, 2013, Achievement of protein micro-crystallography at SPring-8 beamline BL32XU, J. Phys. Conf. Ser., 425, 12002, 10.1088/1742-6596/425/1/012002 Jin, 2014, Multidrug transport protein NorM from Vibrio cholerae simultaneously couples to sodium- and proton-motive force, J. Biol. Chem., 289, 14624, 10.1074/jbc.M113.546770 Joosten, 2012, PDB_REDO: constructive validation, more than just looking for errors, Acta Crystallogr. D Biol. Crystallogr., 68, 484, 10.1107/S0907444911054515 Kaatz, 2005, Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein, Antimicrob. Agents Chemother., 49, 1857, 10.1128/AAC.49.5.1857-1864.2005 Kabsch, 2010, XDS, Acta Crystallogr. D Biol. Crystallogr., 66, 125, 10.1107/S0907444909047337 Kawate, 2006, Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins, Structure, 14, 673, 10.1016/j.str.2006.01.013 Kusakizako, 2016, LCP crystallization and X-ray diffraction analysis of VcmN, a MATE transporter from Vibrio cholerae, Acta Crystallogr. F Struct. Biol. Commun., 72, 552, 10.1107/S2053230X16008931 Lu, 2013, Structures of a Na+-coupled, substrate-bound MATE multidrug transporter, Proc. Natl. Acad. Sci. U S A, 110, 2099, 10.1073/pnas.1219901110 Lu, 2013, Structural insights into H+-coupled multidrug extrusion by a MATE transporter, Nat. Struct. Mol. Biol., 20, 1310, 10.1038/nsmb.2687 McAleese, 2005, A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline, Antimicrob. Agents Chemother., 49, 1865, 10.1128/AAC.49.5.1865-1871.2005 McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206 Miyauchi, 2017, Structural basis for xenobiotic extrusion by eukaryotic MATE transporter, Nat. Commun., 8, 1633, 10.1038/s41467-017-01541-0 Mousa, 2016, MATE transport of the E. coli-derived genotoxin colibactin, Nat. Microbiol., 1, 15009, 10.1038/nmicrobiol.2015.9 Nishima, 2016, Mechanisms for two-step proton transfer reactions in the outward-facing form of MATE transporter, Biophys. J., 110, 1346, 10.1016/j.bpj.2016.01.027 Olsson, 2011, PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions, J. Chem. Theory Comput., 7, 525, 10.1021/ct100578z Omote, 2006, The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations, Trends Pharmacol. Sci., 27, 587, 10.1016/j.tips.2006.09.001 Radchenko, 2015, Structural basis for the blockade of MATE multidrug efflux pumps, Nat. Commun., 6, 7995, 10.1038/ncomms8995 Read, 2011, A new generation of crystallographic validation tools for the Protein Data Bank, Structure, 19, 1395, 10.1016/j.str.2011.08.006 Smirnova, 2009, Probing of the rates of alternating access in LacY with Trp fluorescence, Proc. Natl. Acad. Sci. U S A, 106, 21561, 10.1073/pnas.0911434106 Tanaka, 2013, Structural basis for the drug extrusion mechanism by a MATE multidrug transporter, Nature, 496, 247, 10.1038/nature12014 Tanaka, 2017, Crystal structure of a plant multidrug and toxic compound extrusion family protein, Structure, 25, 1455, 10.1016/j.str.2017.07.009 Winter, 2018, DIALS: implementation and evaluation of a new integration package, Acta Crystallogr. D Struct. Biol., 74, 85, 10.1107/S2059798317017235