Structural Basis for Regulation and Specificity of Fructooligosaccharide Import in Streptococcus pneumoniae
Tài liệu tham khảo
Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr., 66, 213, 10.1107/S0907444909052925
Ahuja, 2015, Structural analysis of bacterial ABC transporter inhibition by an antibody fragment, Structure, 23, 713, 10.1016/j.str.2015.01.020
Berntsson, 2009, The structural basis for peptide selection by the transport receptor OppA, EMBO J., 28, 1332, 10.1038/emboj.2009.65
Berntsson, 2010, A structural classification of substrate-binding proteins, FEBS Lett., 584, 2606, 10.1016/j.febslet.2010.04.043
Berrow, 2007, A versatile ligation-independent cloning method suitable for high-throughput expression screening applications, Nucleic Acids Res., 35, e45, 10.1093/nar/gkm047
Biasini, 2014, SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res., 42, W252, 10.1093/nar/gku340
Bidossi, 2012, A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae, PLoS One, 7, e33320, 10.1371/journal.pone.0033320
Buckwalter, 2012, Pneumococcal carbohydrate transport: food for thought, Trends Microbiol., 20, 517, 10.1016/j.tim.2012.08.008
Cowtan, 2006, The Buccaneer software for automated model building. 1. Tracing protein chains, Acta Crystallogr. D Biol. Crystallogr., 62, 1002, 10.1107/S0907444906022116
Emsley, 2010, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr., 66, 486, 10.1107/S0907444910007493
Feng, 2011, Cloning and characterization of a calcium binding EF-hand protein gene TaCab1 from wheat and its expression in response to Puccinia striiformis f. sp. tritici and abiotic stresses, Mol. Biol. Rep., 38, 3857, 10.1007/s11033-010-0501-8
Flocco, 1994, The 1.9 A x-ray structure of a closed unliganded form of the periplasmic glucose/galactose receptor from Salmonella typhimurium, J. Biol. Chem., 269, 8931, 10.1016/S0021-9258(17)37057-6
Fulyani, 2013, Functional diversity of tandem substrate-binding domains in ABC transporters from pathogenic bacteria, Structure, 21, 1879, 10.1016/j.str.2013.07.020
Gerber, 2008, Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter, Science, 321, 246, 10.1126/science.1156213
Ghimire-Rijal, 2014, Duplication of genes in an ATP-binding cassette transport system increases dynamic range while maintaining ligand specificity, J. Biol. Chem., 289, 30090, 10.1074/jbc.M114.590992
Gifford, 2007, Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs, Biochem. J., 405, 199, 10.1042/BJ20070255
Higgins, 1992, ABC transporters: from microorganisms to man, Annu. Rev. Cell Biol., 8, 67, 10.1146/annurev.cb.08.110192.000435
Hollenstein, 2007, Structure and mechanism of ABC transporter proteins, Curr. Opin. Struct. Biol., 17, 412, 10.1016/j.sbi.2007.07.003
Hopfner, 2016, Invited review: architectures and mechanisms of ATP binding cassette proteins, Biopolymers, 105, 492, 10.1002/bip.22843
Ispahani, 2004, Twenty year surveillance of invasive pneumococcal disease in Nottingham: serogroups responsible and implications for immunisation, Arch. Dis. Child., 89, 757, 10.1136/adc.2003.036921
Iyer, 2007, Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae, Mol. Microbiol., 66, 1, 10.1111/j.1365-2958.2007.05878.x
Kadaba, 2008, The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation, Science, 321, 250, 10.1126/science.1157987
Kelley, 2015, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc., 10, 845, 10.1038/nprot.2015.053
Lacks, 1960, A study of the genetic material determining an enzyme in Pneumococcus, Biochim. Biophys. Acta, 39, 508, 10.1016/0006-3002(60)90205-5
Langvad-Nielsen, 1944, Fermentation power of pneumococci, Acta Pathol. Microbiol. Scand., 21, 370, 10.1111/j.1699-0463.1944.tb04947.x
Linke, 2013, The ABC transporter encoded at the pneumococcal fructooligosaccharide utilization locus determines the ability to utilize long- and short-chain fructooligosaccharides, J. Bacteriol., 195, 1031, 10.1128/JB.01560-12
Mao, 1982, Hinge-bending in L-arabinose-binding protein. The “Venus's-flytrap” model, J. Biol. Chem., 257, 1131, 10.1016/S0021-9258(19)68161-5
Maruyama, 2015, Structure of a bacterial ABC transporter involved in the import of an acidic polysaccharide alginate, Structure, 23, 1643, 10.1016/j.str.2015.06.021
McCoy, 2007, Phaser crystallographic software, J. Appl. Crystallogr., 40, 658, 10.1107/S0021889807021206
Morch-Lund, 1949, The fermenting power of pneumococci, Acta Pathol. Microbiol. Scand., 26, 709, 10.1111/j.1699-0463.1949.tb00772.x
Mosca, 2008, RAPIDO: a web server for the alignment of protein structures in the presence of conformational changes, Nucleic Acids Res., 36, W42, 10.1093/nar/gkn197
Oldham, 2007, Crystal structure of a catalytic intermediate of the maltose transporter, Nature, 450, 515, 10.1038/nature06264
Petoukhov, 2012, New developments in the program package for small-angle scattering data analysis, J. Appl. Crystallogr., 45, 342, 10.1107/S0021889812007662
Pettersen, 2004, UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084
Rambo, 2013, Accurate assessment of mass, models and resolution by small-angle scattering, Nature, 496, 477, 10.1038/nature12070
Rees, 2009, ABC transporters: the power to change, Nat. Rev. Mol. Cell Biol., 10, 218, 10.1038/nrm2646
Rice, 2014, Diversity in ABC transporters: type I, II and III importers, Crit. Rev. Biochem. Mol. Biol., 49, 426, 10.3109/10409238.2014.953626
Rigden, 2004, The DxDxDG motif for calcium binding: multiple structural contexts and implications for evolution, J. Mol. Biol., 343, 971, 10.1016/j.jmb.2004.08.077
Robert, 2014, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res., 42, W320, 10.1093/nar/gku316
Rodionov, 2009, A novel class of modular transporters for vitamins in prokaryotes, J. Bacteriol., 191, 42, 10.1128/JB.01208-08
Schneidman-Duhovny, 2010, FoXS: a web server for rapid computation and fitting of SAXS profiles, Nucleic Acids Res., 38, W540, 10.1093/nar/gkq461
Schneidman-Duhovny, 2013, Accurate SAXS profile computation and its assessment by contrast variation experiments, Biophys. J., 105, 962, 10.1016/j.bpj.2013.07.020
Sheldrick, 2010, Experimental phasing with SHELXC/D/E: combining chain tracing with density modification, Acta Crystallogr. D Biol. Crystallogr., 66, 479, 10.1107/S0907444909038360
Tame, 1994, The structural basis of sequence-independent peptide binding by OppA protein, Science, 264, 1578, 10.1126/science.8202710
Tang, 2007, Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR, Nature, 449, 1078, 10.1038/nature06232
Tettelin, 2001, Complete genome sequence of a virulent isolate of Streptococcus pneumoniae, Science, 293, 498, 10.1126/science.1061217
Vyas, 1987, A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis, Nature, 327, 635, 10.1038/327635a0
Winter, 2013, Decision making in xia2, Acta Crystallogr. D Biol. Crystallogr., 69, 1260, 10.1107/S0907444913015308
Yu, 2015, Structural basis for substrate specificity of an amino acid ABC transporter, Proc. Natl. Acad. Sci. USA, 112, 5243, 10.1073/pnas.1415037112
Zhang, 2011, Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction, Bioinformatics, 27, 2083, 10.1093/bioinformatics/btr331