Structural Analysis of RNA Helicases with Small-Angle X-ray Scattering
Tài liệu tham khảo
Andersen, 2006, Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA, Science, 313, 1968, 10.1126/science.1131981
Bellsolell, 2006, Two structurally atypical HEAT domains in the C-terminal portion of human eIF4G support binding to eIF4A and Mnk1, Structure, 14, 913, 10.1016/j.str.2006.03.012
Bernadó, 2007, Structural characterization of flexible proteins using small-angle X-ray scattering, J. Am. Chem. Soc., 129, 5656, 10.1021/ja069124n
Caruthers, 2000, Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase, Proc. Natl. Acad. Sci. U. S. A., 97, 13080, 10.1073/pnas.97.24.13080
Chacón, 1998, Low-resolution structures of proteins in solution retrieved from X-ray scattering with a genetic algorithm, Biophys. J., 74, 2760, 10.1016/S0006-3495(98)77984-6
Franke, 2009, DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering, J. Appl. Crystallogr., 42, 342, 10.1107/S0021889809000338
Glatter, 1977, A new method for the evaluation of small-angle scattering data, J. Appl. Crystallogr., 10, 415, 10.1107/S0021889877013879
Glatter, 1979, The interpretation of real-space information from small-angle scattering experiments, J. Appl. Crystallogr., 12, 166, 10.1107/S0021889879012139
Glatter, 1982, General theory
Glatter, 1982, Data treatment
Glatter, 1982, Interpretation
Glatter, 1982, Natural high polymers
Glatter, 1982, Synthetic polymers in solution
Guinier, 1939, La diffraction des rayons X aux tres petits angles; application a l'etude de phenomenes ultramicroscopiques, Ann. Phys. (Paris), 16, 161
Hansen, 1991, A comparison of three different methods for analysing small-angle scattering data, J. Appl. Crystallogr., 24, 541, 10.1107/S0021889890013322
He, 2010, Structural basis for the function of DEAH helicases, EMBO Rep., 11, 180, 10.1038/embor.2010.11
He, 2011, The function and architecture of DEAH/RHA helicases, BioMol. Concepts, 2, 315, 10.1515/bmc.2011.024
Jankowsky, 2011, RNA helicases at work: Binding and rearranging, Trends Biochem. Sci., 36, 19, 10.1016/j.tibs.2010.07.008
Kozin, 2001, Automated matching of high- and low-resolution structural models, J. Appl. Crystallogr., 34, 33, 10.1107/S0021889800014126
Lebaron, 2009, The ATPase and helicase activities of Prp43p are stimulated by the G-patch protein Pfa1p during yeast ribosome biogenesis, EMBO J., 28, 3808, 10.1038/emboj.2009.335
Lindner, 2002, General theorems in small-angle scattering
Lindner, 2002, The inverse scattering problem in small-angle scattering
Lindner, 2002, Fourier transformation and deconvolution
Methot, 1996, A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3, Mol. Cell. Biol., 16, 5328, 10.1128/MCB.16.10.5328
Nielsen, 2011, Synergistic activation of eIF4A by eIF4B and eIF4G, Nucl. Acids Res., 39, 2678, 10.1093/nar/gkq1206
Oliveira, 2009, A SAXS study of glucagon fibrillation, J. Mol. Biol., 387, 147, 10.1016/j.jmb.2009.01.020
Pedersen, 1997, Analysis of small-angle scattering data from colloids and polymer solutions: Modeling and least-squares fitting, Adv. Colloid Interface Sci., 70, 171, 10.1016/S0001-8686(97)00312-6
Pedersen, 2004, A flux- and background-optimized version of the NanoSTAR small-angle X-ray scattering camera for solution scattering, J. Appl. Crystallogr., 37, 369, 10.1107/S0021889804004170
Pedersen, 1994, The aggregation behavior of zinc-free insulin studied by small-angle neutron scattering, Eur. Biophys. J., 22, 379, 10.1007/BF00180159
Petoukhov, 2005, Global rigid body modeling of macromolecular complexes against small-angle scattering data, Biophys. J., 89, 1237, 10.1529/biophysj.105.064154
Schutz, 2008, Crystal structure of the yeast eIF4A-eIF4G complex: An RNA-helicase controlled by protein–protein interactions, Proc. Natl. Acad. Sci. U.S.A., 105, 9564, 10.1073/pnas.0800418105
Sonenberg, 2009, Regulation of translation initiation in eukaryotes: Mechanisms and biological targets, Cell, 136, 731, 10.1016/j.cell.2009.01.042
Stuhrmann, 1970, Interpretation of small-angle scattering functions of dilute solutions and gases. A representation of the structures related to a one-particle scattering function, Acta Crystallogr. A, 26, 297, 10.1107/S0567739470000748
Svergun, 1999, Restoring Low Resolution Structure of Biological Macromolecules from Solution Scattering Using Simulated Annealing, Biophys. J., 76, 2879, 10.1016/S0006-3495(99)77443-6
Svergun, 1994, Propagating errors in small-angle scattering data treatment, J. Appl. Crystallogr., 27, 241, 10.1107/S0021889893008337
Svergun, 1991, New developments in direct shape determination from small-angle scattering. 1. Theory and model-calculations, Acta Crystallogr. A, 47, 736, 10.1107/S0108767391006414
Svergun, 1995, CRYSOL—A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Crystallogr., 28, 768, 10.1107/S0021889895007047
Svergun, 1996, New developments in direct shape determination from small-angle scattering. 2. Uniqueness, Acta Crystallogr. A, 52, 419, 10.1107/S0108767396000177
Svergun, 2001, Determination of domain structure of proteins from X-ray solution scattering, Biophys. J., 80, 2946, 10.1016/S0006-3495(01)76260-1
Volkov, 2003, Uniqueness of ab initio shape determination in small-angle scattering, J. Appl. Crystallogr., 36, 860, 10.1107/S0021889803000268
Walther, 2000, Reconstruction of low-resolution three-dimensional density maps from one-dimensional small-angle X-ray solution scattering data for biomolecules, J. Appl. Crystallogr., 33, 350, 10.1107/S0021889899015976