Structural Analysis of Needle Coke

Z. R. Ismagilov1,2, С. А. Созинов2, А. Н. Попова2, В. П. Запорин3
1Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2ederal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, F, Russia
3Ufa State Petroleum-Technology University, Ufa, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Meier, M.W., Cracking behavior of anodes, PhD Thesis, Zurich: Federal Inst. Technol., 1996.

Akhmetov, M.M., Zaitseva, S.A., and Gimaev, R.N., Proisvodstvo i primenenie prokalennogo igol’chatogo koksa (Production and Use of Calcined Needle Coke), Moscow: Tsentr. Nauchno-Issled. Inst. Inf. Tekh.-Ekon. Issled. Neftepererab. Neftekhim. Prom., 1983.

Niu, P.X., Wang, Y.L., and Zhan, L., Electrochemical performance of needle coke and pitch coke used as anode material for Li-ion battery, J. Mater. Sci. Eng., 2011, vol. 29, pp. 204–209.

Hume, S.M., Anode Reactivity: Influence of Raw Material Properties, Sierre: R&D Carbon, 1999.

Sarkar, A., Effect of coke properties on anode properties, PhD Thesis, Montreal: Univ. of Quebec, 2015.

Fisher, W.K. and Perruchoud, R.C., Influence of Coke Calcining Parameters on Petroleum Coke Quality, Proc. AIME Annual Meeting “Light Metals 1985,” Warrendale, PA: Miner., Met. Mater. Soc., 1985, pp. 811–826.

Halim, H.P., Im, J.S., and Lee, C.W., Preparation of needle coke from petroleum by-products, Carbon Lett., 2013, vol. 14, p. 152.

Predel, H., Petroleum coke, in Ullmann’s Encyclopedia of Industrial Chemistry, Bohnet, M., Ed., Weinheim: Wiley, 2012.

Cheng, Y., Zhang, Q., Fang, C., et al., Co-carbonization behaviors of petroleum pitch/waste SBS: influence on morphology and structure of resultant cokes, J. Anal. Appl. Pyrol., 2018, vol. 129, pp. 154–164.

Litvinov, E.V. and Tovstenko, A.F., Effect of structural parameters of coke on exploitation properties of anode mass, Tr. Vses. Alyuminievo-Magnievogo Inst., 1983, pp. 43–48.

Tano, T., Oyama, T., Oda, T., Fujinaga, I., and Hashisaka, H., EU Patent EP2336267, 2011.

Zhu, Y.-M., Zhao, X.-F., Gao, L.-J., et al., Quantitative study of the microcrystal structure on coal based on needle coke with curve-fitted of XRD and Raman spectrum, Spectrosc. Spectral Anal. (Beijing), 2017. https://doi.org/10.3964/j.issn.1000-0593(2017)06-1919-06

GOST (State Standard) 26132-84: Petroleum and Pitch Cokes, Microstructure Evaluation Method, Moscow: Izd. Standartov, 1985.

Zelenkin, V.G. and Molotok, N.P., Grafitirovannye elektrody dlya elektrostaleplavil’nykh pechei vysokoi moshchnosti (Graphite Electrodes for High Power Electric Steel Smelting Furnaces), Moscow: Tsentr. Nauchno-Issled. Inst. Ekon. Inf. Tsvetn. Metall., 1982.

Perruchoud, R.C., Meier, M.W., and Fischer, W.K., Coke characteristics from the refiners to the smelters, Proc. 129th TMS Annual Meeting "Light Metals 2000", Nashville, Tennessee, March 12-16,

2000, Warrendale, PA: Miner., Met. Mater. Soc., 2000, pp. 459-465.

Vitchus, B., Cannova, F., and Childs, H., Calcined coke from crude oil to customer silo, Proc. 130th TMS Annual Meeting Light Metals 2001, New Orleans, Louisiana, February 11-15,

2000, Warrendale, PA: Miner., Met. Mater. Soc., 2001, pp. 589-596.

Song, S. and Cheng, X., The influence of alkyl group on needle coke formation, Adv. Mater. Res., 2011, vol. 335, pp. 1433–1438.

Akhmetov, M.M., Formation mechanism of the structure of needle coke, Mir Nefteprod., 2015, no. 4, pp. 29–35.

Zhou, X.P., Xu, D.Sh., Zhang, P.X., et al., Research on coal tar pitch based needle coke production quality, Adv. Mater. Res., 2013, vol. 711, pp. 155–160.

Sadler, B.A. and Welch, B.J., Anode consumption mechanisms—a practical review of the theory and anode property consideration, Proc. 7th Australasian Aluminum Smelting Technology Conf. Workshop, Sydney, NSW : Univ. of New South Wales, 2001.

Niu, P.X., Wang, Y.L., and Zhan, L., Electrochemical performance of needle coke and pitch coke used as anode material for Li-ion battery, J. Mater. Sci. Eng., 2011, vol. 29, pp. 204–209.

Zhang, B., Guo, H., Li, X., et al., Mechanism for effects of structure and properties of carbon on its electrochemical characteristics as anode of lithium ion battery, J. Central South Univ. Technol., 2007, vol. 38, pp. 454–460.

Hulse, K.L., Anode Manufacture: Raw Materials Formulation and Processing Parameters, Sierre: R&D Carbon, 2000.

Shi, H., Reimers, J.N., and Dahn, J.R., Structure-refinement program for disordered carbon, J. Appl. Cryst., 1993, vol. 26, pp. 827–836.

Inagaki, M. and Shiraishi, M., The evaluation of graphitization degree, Carbon Technol., 1951, vol. 5, pp. 165–175.

Wang, H.J. and Wang, H.F., The effect of graphitization temperature on the microstructure and mechanical properties of carbon fibers, New Carbon Mater., 2005, vol. 20, pp. 158–163.

Zhao, Sh.G., Wang, B.Ch., and Sun, Q., Effect of physical disturbance on the structure of needle coke, Phys. B, 2010, vol. 19, no. 10, pp. 108–111.

Popovici, I.C., Birghila, S., Voicu, G., et al., Morphological and microstructural characterization of some petroleum cokes as potential anode materials in lithium ion batteries, J. Optoelectron. Adv. Mater., 2010, vol. 12, no. 9, pp. 1903–1908.

Kim, I.J., Yang, S., Jeon, M.-J., et al., Structures and electrochemical performances of pyrolized carbons from graphite oxides for electric double-layer capacitor, J. Power Sources, 2007, vol. 173, no. 1, pp. 621–625.

Monaghan, B.J., Nightingale, R., Daly, V., and Fitzpatrick, E., Determination of the thermal histories of coke in a blast furnace through X-ray analysis, Ironmaking Steelmaking, 2008, vol. 35, pp. 38–42.

Ouzilleau, Ph., Gheribi, A.E., Eriksson, G., et al., A size-dependent thermodynamic model for coke crystallites: the carbon–hydrogen system up to 2500 K, Carbon, 2015, vol. 85, pp. 99–118.

Sozinov, S.A., Popova, A.N., Barnakov, Ch.N., and Ismagilov, Z.R., X-ray diffraction technique: structure determination of carbonaceous materials (review), Khim. Interesakh Ustoich. Razvit., 2016, vol. 24, no. 4, pp. 569–576.

Ismagilov, Z.R., Nikitin, A.P., Valnyukova, A.S., Mikhaylova, E.S., Zaporin, V.P., and Galyautdinov, A.G., ESR analysis of industrial needle-coke samples, Coke Chem., 2019, vol. 62, no. 3, pp. 89–94.

ICDD, PDF-2 2011 (Database), Kalakkodu, S., Ed., Newtown Square, PA: Int. Centre Diffraction Data, 2011.

Khokhlova, G.P., Barnakov, Ch.N., Malysheva, V.Yu., and Ismagilov, Z.R., Effect of thermal processing mode on catalytic graphitization of coal tar pitch, Khim. Interesakh Ustoich. Razvit., 2015, no. 2, pp. 10–16.

Popova, A.N., Crystallographic analysis of graphite by x-ray diffraction, Coke Chem., 2017, vol. 60, no. 9, pp. 361–365.

Mochida, I., Fujimoto, K., and Oyama, T., Chemistry in the production and utilization of needle coke, Chem. Phys. Carbon, 1994, vol. 24, pp. 111–212.