Strongly correlated photons on a chip
Tóm tắt
Từ khóa
Tài liệu tham khảo
O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).
Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002).
Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006).
Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nature Phys. 2, 856–861 (2006).
Angelakis, D. G., Santos, M. F. & Bose, S. Photon blockade induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805(R) (2007).
Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).
Kubanek, A. et al. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008).
Schneebeli, L., Kira, M. & Koch, S. W. Characterization of strong light–matter coupling in semiconductor quantum-dot microcavities via photon-statistics spectroscopy. Phys. Rev. Lett. 101, 097401 (2008).
Gerace, D., Türeci, H. E., Imamoğlu, A., Giovannetti, V. & Fazio, R. The quantum optical Josephson interferometer. Nature Phys. 5, 281–284 (2009).
Chang, D. E., Sørensen A. S., Demler, E. A. & Lukin, M. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).
Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997).
Brune, M. et al. Quantum Rabi oscillations: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).
Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic-crystal nanocavity. Nature 432, 200–203 (2004).
Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).
Peter, E. et al. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).
Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).
Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008).
Deppe, F. et al. Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED. Nature Phys. 4, 686–691 (2008).
Bishop, L. S. et al. Nonlinear response of the vacuum Rabi resonance. Nature Phys. 5, 105–109 (2009).
Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).
Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).
Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunneling and blockade. Nature Phys. 4, 859–863 (2008).
Kasprzak, J. et al. Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nature Mater. 9, 304–308 (2010).
Moser, S. et al. Scanning a photonic-crystal slab nanocavity by condensation of xenon. Appl. Phys. Lett. 87, 141105 (2005).
Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).
Srinivasan, K. & Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature 450, 862–866 (2007).
Santori, C. et al. Submicrosecond correlations in photoluminescence from InAs quantum dots. Phys. Rev. B 69, 205324 (2004).
Manson, N. B. & Harrison, J. P. Photo-ionization of the nitrogen-vacancy centre in diamond. Diam. Rel. Mater. 14, 1705–1710 (2005).
Mohan, A. et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photon. 4, 302–306 (2010).
Gallo, P. et al. Integration of site-controlled pyramidal quantum dots and photonic-crystal membrane cavities. Appl. Phys. Lett. 92, 263101 (2008).
Bennett, A. J. et al. Giant Stark effect in the emission of single semiconductor quantum dots. Appl. Phys. Lett. 97, 031104 (2010).