Strong influence of westerly wind bursts on El Niño diversity

Nature Geoscience - Tập 8 Số 5 - Trang 339-345 - 2015
Dake Chen1, Tao Lian1, Congbin Fu2, Mark A. Cane3, Youmin Tang1, Raghu Murtugudde4, Xunshu Song1, Qiaoyan Wu1, Lei Zhou1
1State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, 36 Baochu North Road, Hangzhou, 310012, China
2Nanjing University, 22 Hankou Road, Nanjing, 210093, China
3Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, New York, 10964, Palisades, USA
4University of Maryland, 2227 CSS Building, College Park, 20842, Maryland, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weath. Rev. 97, 163–172 (1969).

Sarachik, E. S. & Cane, M. A. The El Niño–Southern Oscillation Phenomenon (Cambridge Univ. Press, 2010).

Zebiak, S. E. & Cane, M. A. A model El Niño–Southern Oscillation. Mon. Weath. Rev. 115, 2262–2278 (1987).

Jin, F. F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

Meinen, C. S. & McPhaden, M. J. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Clim. 13, 3551–3559 (2000).

Moore, A. M. & Kleeman, R. Stochastic forcing of ENSO by the intraseasonal oscillation. J. Clim. 12, 1199–1220 (1999).

Thompson, C. J. & Battisti, D. S. A linear stochastic dynamical model of ENSO. Part I: Model development. J. Clim. 13, 2818–2832 (2000).

Lengaigne, M. et al. Triggering of El Nino by westerly wind events in a coupled general circulation model. Clim. Dynam. 23, 601–620 (2004).

Kessler, W. Is ENSO a cycle or a series of events? Geophy. Res. Lett. 29, http://dx.doi.org/10.1029/2002GL015924 (2002).

Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E. & Huang, D. J. Predictability of El Niño over the past 148 years. Nature 428, 733–736 (2004).

Chen, D., Zebiak, S. E., Busalacchi, A. J. & Cane, M. A. An improved procedure for El Niño forecasting: implications for predictability. Science 269, 1699–1702 (1995).

Chen, D. & Cane, M. A. El Niño prediction and predictability. J. Comput. Phys. 227, 3625–3640 (2008).

Fedorov, A. V., Hu, S., Lengaigne, M. & Guilyardi, E. The impact of westerly wind bursts and ocean initial state on the development and diversity of El Niño events. Clim. Dynam. 44, 1381–1401 (2014).

Menkes, C. E. et al. About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys. Res. Lett. 41, 6476–6483 (2014).

Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weath. Rev. 110, 354–384 (1982).

Fu, C., Diaz, H. F. & Fletcher, J. O. Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon. Weath. Rev. 114, 1716–1738 (1986).

Newman, M., Shin, S-I. & Alexander, M. A. Natural variation in ENSO flavors. J. Geophys. Res. 38, L14705 (2011).

Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11007 (2007).

Kug J-S., Jin, F-F. & An, S-I. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

Kug, J-S., Choi, J., An, S-I., Jin, F-F. & Wittenberg, A. T. Warm pool and cold tongue El Niño events as simulated by the GFDL CM2.1 coupled GCM. J. Clim. 23, 1226–1239 (2010).

Yu, J. Y. & Kim, S. T. Identifying the types of major El Niño events since 1870. Int. J. Climatol. 33, 2105–2112 (2011).

Lian, T. & Chen, D. An Evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J. Clim. 25, 5361–5373 (2012).

Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).

Kim, H-S., Ho, C-H., Kim, J-H. & Chu, P.-S. Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Clim. 24, 488–508 (2011).

Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

Johnson, N. How many ENSO flavors can we distinguish? J. Clim. 26, 4816–4827 (2013).

Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. http://dx.doi.org/10.1175/BAMS-D-13-00117.1 (2014).

Capotondi, A. ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. 118, 4755–4770 (2013).

Cai, W. & Cowan, T. La Niña Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett. 36, L12805 (2009).

Cai, W. et al. More frequent extreme La Niña events under greenhouse warming. Nature Clim. Change 5, 132–137 (2015).

Eisenman, I., Yu, L. & Tziperman, E. Westerly wind bursts: ENSO's tail rather than the dog. J. Clim. 18, 5224–5238 (2005).

Gebbie, G., Eisenman, I., Wittenberg, A. & Tziperman, E. Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci. 64, 3281–3295 (2007).

McPhaden, M. J. Climate oscillations: Genesis and evolution of the 1997–98 El Niño. Science 283, 950–954 (1999).

Picaut, J., Masia, F. & DuPenhoat, Y. An advective–reflective conceptual model for the oscillatory nature of the ENSO. Science 277, 663–66 (1997).

Lian, T., Chen, D., Tang, Y. & Wu, Q. Effects of westerly wind bursts on El Niño: A new perspective. Geophys. Res. Lett. 41, 3522–3527 (2014).

Hu, S., Fedorov, A. V., Lengaigne, M. & Guilyardi, E. The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett. 41, 4654–4663 (2014).

Ramesh, N. & Murtugudde, R. All flavours of El Niño have similar early subsurface origins. Nature Clim. Change 3, 42–46 (2013).

Monahan, A. H. A simple model for the skewness of global sea surface winds. J. Atmos. Sci. 61, 2037–2049 (2004).

Tippett, M. K., Barnston, A. G. & Li, S. Performance of recent multimodel ENSO forecasts. J. Appl. Meteor. Climatol. 51, 637–654 (2012).

Wang, W., Chen, M. & Kumar, A. An assessment of the CFS real-time seasonal forecasts. Weath. Forecast 25, 950–969 (2010).

Real-time ENSO Forecasts (International Research Institute for Climate and Society); http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current

Lee, T. & McPhaden, M. J. Increasing intensity of El Niño in the central equatorial Pacific. Geophys. Res. Lett. 37, L14603 (2010).

Chen, D., Cane, M. A. & Zebiak, S. E. The impact of NSCAT winds on predicting the 1997/98 El Niño: A case study with the Lamont–Doherty Earth Observatory model. J. Geophys. Res. 104, 11321–11327 (1999).

Chen, D. et al. The sensitivity of the tropical Pacific Ocean simulation to the spatial and temporal resolution of wind forcing. J. Geophys. Res. 104, 11261–11271 (1999).

Bellenger H., Guilyardi, E., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dyn. 42, 1999–2018 (2013).

Harrison, D. E. & Vecchi, G. A. Westerly wind events in the tropical Pacific, 1986–95. J. Clim. 10, 3131–3156 (1997).

Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

Chang, P. et al. Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett. 34, L16608 (2007).

Zhang, H., Clement, A. & Di Nezio, P. The South Pacific Meridional Mode: A mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).

Chiodi, A. & Harrison, D. Equatorial Pacific easterly wind surges and the onset of La Nina events. J. Clim. http://dx.doi.org/10.1175/JCLI-D-14-00227.1 (2015).