Strong and ductile refractory high-entropy alloys with super formability

Acta Materialia - Tập 245 - Trang 118602 - 2023
Cheng Zhang1, Haoren Wang2, Xinyi Wang3, Yuanbo T. Tang4, Qin Yu5,6, Chaoyi Zhu6, Mingjie Xu1, Shiteng Zhao6, Rui Kou7, Xin Wang1, Benjamin E. MacDonald1, Roger C. Reed4, Kenneth S. Vecchio8, Penghui Cao3, Timothy J. Rupert1, Enrique J. Lavernia1
1Department of Materials Science and Engineering, University of California Irvine, Irvine, CA 92697, USA
2Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
3Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697 USA
4Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
5Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
6Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
7Department of Structural Engineering, UC San Diego, La Jolla, CA 92093, USA
8Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA

Tài liệu tham khảo

Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001 Miracle, 2017, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448, 10.1016/j.actamat.2016.08.081 George, 2019, High-entropy alloys, Nat. Rev. Mater., 1 Yang, 2018, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362, 933, 10.1126/science.aas8815 Fu, 2018, A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength, Sci. Adv., 4, eaat8712, 10.1126/sciadv.aat8712 He, 2016, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102, 187, 10.1016/j.actamat.2015.08.076 Gludovatz, 2014, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 1153, 10.1126/science.1254581 Senkov, 2018, Development and exploration of refractory high entropy alloys—a review, J. Mater. Res., 33, 3092, 10.1557/jmr.2018.153 Lee, 2020, Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6, eaaz4748, 10.1126/sciadv.aaz4748 Maresca, 2020, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K, Acta Mater., 182, 235, 10.1016/j.actamat.2019.10.015 Senkov, 2019, High temperature strength of refractory complex concentrated alloys, Acta Mater., 175, 394, 10.1016/j.actamat.2019.06.032 Zou, 2014, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Mater., 65, 85, 10.1016/j.actamat.2013.11.049 Zou, 2015, Ultrastrong ductile and stable high-entropy alloys at small scales, Nat. Commun., 6, 1, 10.1038/ncomms8748 Wei, 2020, Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility, Nat. Mater., 1 Huang, 2017, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29, 10.1002/adma.201701678 Senkov, 2010, Refractory high-entropy alloys, Intermetallics, 18, 1758, 10.1016/j.intermet.2010.05.014 Senkov, 2021, Correlations to improve room temperature ductility of refractory complex concentrated alloys, Mater. Sci. Eng. A, 820, 10.1016/j.msea.2021.141512 Huang, 2021, A study on the severely cold-rolled and annealed quaternary equiatomic derivatives from quinary HfNbTaTiZr refractory high entropy alloy, J. Alloy. Compd., 855, 10.1016/j.jallcom.2020.157404 Sheikh, 2016, Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys., 120, 10.1063/1.4966659 Lilensten, 2017, Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity, Mater. Res. Lett., 5, 110, 10.1080/21663831.2016.1221861 Wang, 2019, New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution, Intermetallics, 107, 15, 10.1016/j.intermet.2019.01.004 Zýka, 2019, Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system, Entropy, 21, 114, 10.3390/e21020114 An, 2021, Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy, Mater. Horiz., 8, 948, 10.1039/D0MH01341B Senkov, 2015, Microstructure and properties of a refractory high-entropy alloy after cold working, J. Alloy. Compd., 649, 1110, 10.1016/j.jallcom.2015.07.209 Senkov, 2018, Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy, Metall. Mater. Trans. A, 49, 2876, 10.1007/s11661-018-4646-8 Chen, 2019, Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy, J. Alloy. Compd., 795, 19, 10.1016/j.jallcom.2019.04.291 Schuh, 2018, Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties, Acta Mater., 142, 201, 10.1016/j.actamat.2017.09.035 Juan, 2016, Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining, Mater. Lett., 184, 200, 10.1016/j.matlet.2016.08.060 Zherebtsov, 2020, Microstructure and mechanical properties evolution in HfNbTaTiZr refractory high-entropy alloy during cold rolling, Adv. Eng. Mater., 22, 10.1002/adem.202000105 Eleti, 2020, Mechanical behavior and thermal activation analysis of HfNbTaTiZr body-centered cubic high-entropy alloy during tensile deformation at 77 K, Scr. Mater., 188, 118, 10.1016/j.scriptamat.2020.07.028 Lukáč, 2018, Defects in high entropy alloy HfNbTaTiZr prepared by high pressure torsion, Acta Phys. Pol. A, 134, 891, 10.12693/APhysPolA.134.891 Eleti, 2018, Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy, Mater. Charact., 136, 286, 10.1016/j.matchar.2017.12.034 Čížek, 2018, Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation, J. Alloy. Compd., 768, 924, 10.1016/j.jallcom.2018.07.319 Zhu, 2021, Heterostructured materials: superior properties from hetero-zone interaction, Mater. Res. Lett., 9, 1, 10.1080/21663831.2020.1796836 Ma, 2017, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals, Mater. Today, 20, 323, 10.1016/j.mattod.2017.02.003 Wu, 2015, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility, Proc. Natl. Acad. Sci., 112, 14501, 10.1073/pnas.1517193112 Wang, 2002, High tensile ductility in a nanostructured metal, Nature, 419, 912, 10.1038/nature01133 Tellkamp, 2001, Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy, Metall. Mater. Trans. A, 32, 2335, 10.1007/s11661-001-0207-6 Lu, 2014, Making strong nanomaterials ductile with gradients, Science, 345, 1455, 10.1126/science.1255940 Cheng, 2018, Extra strengthening and work hardening in gradient nanotwinned metals, Science, 362, eaau1925, 10.1126/science.aau1925 Ma, 2019, Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy, Nat. Commun., 10, 1, 10.1038/s41467-019-13311-1 Zhang, 2018, Design of non-equiatomic high entropy alloys with heterogeneous lamella structure towards strength-ductility synergy, Scr. Mater., 154, 78, 10.1016/j.scriptamat.2018.05.020 Zhang, 2020, Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy, Acta Mater., 199, 602, 10.1016/j.actamat.2020.08.043 Murakami, 1987 Jiang, 2007, Fracture of nitinol under quasistatic and dynamic loading, Metall. Mater. Trans. A., 38, 2907, 10.1007/s11661-007-9349-5 Sulzer, 2018, On the rapid assessment of mechanical behavior of a prototype nickel-based superalloy using small-scale testing, Metall. Mater. Trans. A, 49, 4214, 10.1007/s11661-018-4673-5 Zhou, 2004, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B, 69, 10.1103/PhysRevB.69.144113 Lin, 2013, An n-body potential for a Zr–Nb system based on the embedded-atom method, J. Phys. Condens. Matter, 25 Stukowski, 2009, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci. Eng., 18, 15012, 10.1088/0965-0393/18/1/015012 Senkov, 2012, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci., 47, 4062, 10.1007/s10853-012-6260-2 Zhang, 2019, Non-equiatomic FeNiCoAl-based high entropy alloys with multiscale heterogeneous lamella structure for strength and ductility, Mater. Sci. Eng. A, 743, 361, 10.1016/j.msea.2018.11.073 Hughes, 2000, Microstructure and strength of nickel at large strains, Acta Mater., 48, 2985, 10.1016/S1359-6454(00)00082-3 Sadeghpour, 2019, Effect of dislocation channeling and kink band formation on enhanced tensile properties of a new beta Ti alloy, J. Alloy. Compd., 808, 10.1016/j.jallcom.2019.151741 Yang, 2010, Evolution of deformation mechanisms of Ti–22.4 Nb–0.73 Ta–2Zr–1.34 O alloy during straining, Acta Mater., 58, 2778, 10.1016/j.actamat.2010.01.015 Churchman, 1955, The yield phenomena, kink bands and geometric softening in titanium crystals, Acta Metall., 3, 22, 10.1016/0001-6160(55)90006-7 Shewmon, 2016 Balogh, 2014, Diffusion in metals and alloys, 387 Maiti, 2016, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Mater., 106, 87, 10.1016/j.actamat.2016.01.018 Lei, 2018, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563, 546, 10.1038/s41586-018-0685-y Reed, 2008 Prasad, 2017 Kaufman, 1984, Properties of cast Mar-M-247 for turbine blisk applications, Superalloys, 1984, 43 Sengupta, 1994, Tensile behavior of a new single-crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures, J. Mater. Eng. Perform., 3, 73, 10.1007/BF02654502 Erickson, 1996, The development and application of CMSX-10, Superalloys, 1996, 35 Wee, 2020, Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines, Appl. Sci., 10, 5476, 10.3390/app10165476 Wojcik, 2001, Thermomechanical processing and properties of niobium alloys, 163 Wang, 2020, Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures, Acta Mater., 201, 517, 10.1016/j.actamat.2020.10.044 Yang, 2016, Back stress strengthening and strain hardening in gradient structure, Mater. Res. Lett., 4, 145, 10.1080/21663831.2016.1153004 Ashby, 1970, The deformation of plastically non-homogeneous materials, Philos. Mag., 21, 399, 10.1080/14786437008238426 Gao, 2003, Geometrically necessary dislocation and size-dependent plasticity, Scr. Mater., 48, 113, 10.1016/S1359-6462(02)00329-9 Zhu, 2016, Determination of geometrically necessary dislocations in large shear strain localization in aluminum, Acta Mater., 118, 383, 10.1016/j.actamat.2016.07.051 C. Zhu, T. Harrington, G.T. Gray, K.S. Vecchio, Dislocation-type evolution in quasi-statically compressed polycrystalline nickel, Acta Mater. 155 (2018) 104-116. Zhu, 2017, Investigation of the shear response and geometrically necessary dislocation densities in shear localization in high-purity titanium, Int. J. Plast., 92, 148, 10.1016/j.ijplas.2017.03.009 Demir, 2009, Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography, Acta Mater., 57, 559, 10.1016/j.actamat.2008.09.039