Strong and ductile refractory high-entropy alloys with super formability
Tài liệu tham khảo
Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001
Miracle, 2017, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448, 10.1016/j.actamat.2016.08.081
George, 2019, High-entropy alloys, Nat. Rev. Mater., 1
Yang, 2018, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362, 933, 10.1126/science.aas8815
Fu, 2018, A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength, Sci. Adv., 4, eaat8712, 10.1126/sciadv.aat8712
He, 2016, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater., 102, 187, 10.1016/j.actamat.2015.08.076
Gludovatz, 2014, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 1153, 10.1126/science.1254581
Senkov, 2018, Development and exploration of refractory high entropy alloys—a review, J. Mater. Res., 33, 3092, 10.1557/jmr.2018.153
Lee, 2020, Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6, eaaz4748, 10.1126/sciadv.aaz4748
Maresca, 2020, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K, Acta Mater., 182, 235, 10.1016/j.actamat.2019.10.015
Senkov, 2019, High temperature strength of refractory complex concentrated alloys, Acta Mater., 175, 394, 10.1016/j.actamat.2019.06.032
Zou, 2014, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Mater., 65, 85, 10.1016/j.actamat.2013.11.049
Zou, 2015, Ultrastrong ductile and stable high-entropy alloys at small scales, Nat. Commun., 6, 1, 10.1038/ncomms8748
Wei, 2020, Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility, Nat. Mater., 1
Huang, 2017, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29, 10.1002/adma.201701678
Senkov, 2010, Refractory high-entropy alloys, Intermetallics, 18, 1758, 10.1016/j.intermet.2010.05.014
Senkov, 2021, Correlations to improve room temperature ductility of refractory complex concentrated alloys, Mater. Sci. Eng. A, 820, 10.1016/j.msea.2021.141512
Huang, 2021, A study on the severely cold-rolled and annealed quaternary equiatomic derivatives from quinary HfNbTaTiZr refractory high entropy alloy, J. Alloy. Compd., 855, 10.1016/j.jallcom.2020.157404
Sheikh, 2016, Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys., 120, 10.1063/1.4966659
Lilensten, 2017, Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity, Mater. Res. Lett., 5, 110, 10.1080/21663831.2016.1221861
Wang, 2019, New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution, Intermetallics, 107, 15, 10.1016/j.intermet.2019.01.004
Zýka, 2019, Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr system, Entropy, 21, 114, 10.3390/e21020114
An, 2021, Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy, Mater. Horiz., 8, 948, 10.1039/D0MH01341B
Senkov, 2015, Microstructure and properties of a refractory high-entropy alloy after cold working, J. Alloy. Compd., 649, 1110, 10.1016/j.jallcom.2015.07.209
Senkov, 2018, Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy, Metall. Mater. Trans. A, 49, 2876, 10.1007/s11661-018-4646-8
Chen, 2019, Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy, J. Alloy. Compd., 795, 19, 10.1016/j.jallcom.2019.04.291
Schuh, 2018, Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties, Acta Mater., 142, 201, 10.1016/j.actamat.2017.09.035
Juan, 2016, Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining, Mater. Lett., 184, 200, 10.1016/j.matlet.2016.08.060
Zherebtsov, 2020, Microstructure and mechanical properties evolution in HfNbTaTiZr refractory high-entropy alloy during cold rolling, Adv. Eng. Mater., 22, 10.1002/adem.202000105
Eleti, 2020, Mechanical behavior and thermal activation analysis of HfNbTaTiZr body-centered cubic high-entropy alloy during tensile deformation at 77 K, Scr. Mater., 188, 118, 10.1016/j.scriptamat.2020.07.028
Lukáč, 2018, Defects in high entropy alloy HfNbTaTiZr prepared by high pressure torsion, Acta Phys. Pol. A, 134, 891, 10.12693/APhysPolA.134.891
Eleti, 2018, Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy, Mater. Charact., 136, 286, 10.1016/j.matchar.2017.12.034
Čížek, 2018, Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation, J. Alloy. Compd., 768, 924, 10.1016/j.jallcom.2018.07.319
Zhu, 2021, Heterostructured materials: superior properties from hetero-zone interaction, Mater. Res. Lett., 9, 1, 10.1080/21663831.2020.1796836
Ma, 2017, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals, Mater. Today, 20, 323, 10.1016/j.mattod.2017.02.003
Wu, 2015, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility, Proc. Natl. Acad. Sci., 112, 14501, 10.1073/pnas.1517193112
Wang, 2002, High tensile ductility in a nanostructured metal, Nature, 419, 912, 10.1038/nature01133
Tellkamp, 2001, Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy, Metall. Mater. Trans. A, 32, 2335, 10.1007/s11661-001-0207-6
Lu, 2014, Making strong nanomaterials ductile with gradients, Science, 345, 1455, 10.1126/science.1255940
Cheng, 2018, Extra strengthening and work hardening in gradient nanotwinned metals, Science, 362, eaau1925, 10.1126/science.aau1925
Ma, 2019, Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy, Nat. Commun., 10, 1, 10.1038/s41467-019-13311-1
Zhang, 2018, Design of non-equiatomic high entropy alloys with heterogeneous lamella structure towards strength-ductility synergy, Scr. Mater., 154, 78, 10.1016/j.scriptamat.2018.05.020
Zhang, 2020, Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy, Acta Mater., 199, 602, 10.1016/j.actamat.2020.08.043
Murakami, 1987
Jiang, 2007, Fracture of nitinol under quasistatic and dynamic loading, Metall. Mater. Trans. A., 38, 2907, 10.1007/s11661-007-9349-5
Sulzer, 2018, On the rapid assessment of mechanical behavior of a prototype nickel-based superalloy using small-scale testing, Metall. Mater. Trans. A, 49, 4214, 10.1007/s11661-018-4673-5
Zhou, 2004, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B, 69, 10.1103/PhysRevB.69.144113
Lin, 2013, An n-body potential for a Zr–Nb system based on the embedded-atom method, J. Phys. Condens. Matter, 25
Stukowski, 2009, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci. Eng., 18, 15012, 10.1088/0965-0393/18/1/015012
Senkov, 2012, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, J. Mater. Sci., 47, 4062, 10.1007/s10853-012-6260-2
Zhang, 2019, Non-equiatomic FeNiCoAl-based high entropy alloys with multiscale heterogeneous lamella structure for strength and ductility, Mater. Sci. Eng. A, 743, 361, 10.1016/j.msea.2018.11.073
Hughes, 2000, Microstructure and strength of nickel at large strains, Acta Mater., 48, 2985, 10.1016/S1359-6454(00)00082-3
Sadeghpour, 2019, Effect of dislocation channeling and kink band formation on enhanced tensile properties of a new beta Ti alloy, J. Alloy. Compd., 808, 10.1016/j.jallcom.2019.151741
Yang, 2010, Evolution of deformation mechanisms of Ti–22.4 Nb–0.73 Ta–2Zr–1.34 O alloy during straining, Acta Mater., 58, 2778, 10.1016/j.actamat.2010.01.015
Churchman, 1955, The yield phenomena, kink bands and geometric softening in titanium crystals, Acta Metall., 3, 22, 10.1016/0001-6160(55)90006-7
Shewmon, 2016
Balogh, 2014, Diffusion in metals and alloys, 387
Maiti, 2016, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Mater., 106, 87, 10.1016/j.actamat.2016.01.018
Lei, 2018, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563, 546, 10.1038/s41586-018-0685-y
Reed, 2008
Prasad, 2017
Kaufman, 1984, Properties of cast Mar-M-247 for turbine blisk applications, Superalloys, 1984, 43
Sengupta, 1994, Tensile behavior of a new single-crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures, J. Mater. Eng. Perform., 3, 73, 10.1007/BF02654502
Erickson, 1996, The development and application of CMSX-10, Superalloys, 1996, 35
Wee, 2020, Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines, Appl. Sci., 10, 5476, 10.3390/app10165476
Wojcik, 2001, Thermomechanical processing and properties of niobium alloys, 163
Wang, 2020, Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures, Acta Mater., 201, 517, 10.1016/j.actamat.2020.10.044
Yang, 2016, Back stress strengthening and strain hardening in gradient structure, Mater. Res. Lett., 4, 145, 10.1080/21663831.2016.1153004
Ashby, 1970, The deformation of plastically non-homogeneous materials, Philos. Mag., 21, 399, 10.1080/14786437008238426
Gao, 2003, Geometrically necessary dislocation and size-dependent plasticity, Scr. Mater., 48, 113, 10.1016/S1359-6462(02)00329-9
Zhu, 2016, Determination of geometrically necessary dislocations in large shear strain localization in aluminum, Acta Mater., 118, 383, 10.1016/j.actamat.2016.07.051
C. Zhu, T. Harrington, G.T. Gray, K.S. Vecchio, Dislocation-type evolution in quasi-statically compressed polycrystalline nickel, Acta Mater. 155 (2018) 104-116.
Zhu, 2017, Investigation of the shear response and geometrically necessary dislocation densities in shear localization in high-purity titanium, Int. J. Plast., 92, 148, 10.1016/j.ijplas.2017.03.009
Demir, 2009, Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography, Acta Mater., 57, 559, 10.1016/j.actamat.2008.09.039