Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 1906769.
Liu, L. Y.; Deng, H.; Tang, X. P.; Lu, Y. X.; Zhou, J. Y.; Wang, X. F.; Zhao, Y. Y.; Huang, B.; Shi, Y. G. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2105838118.
Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202200705.
Zeng, Z. H.; Jiang, F. Z.; Yue, Y.; Han, D. X.; Lin, L. C.; Zhao, S. Y.; Zhao, Y. B.; Pan, Z. Y.; Li, C. J.; Nyström, G. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 2020, 32, 1908496.
Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.
Balci, O.; Polat, E. O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 2015, 6, 6628.
Li, T.; Zhi, D. D.; Guo, Z. H.; Li, J. Z.; Chen, Y.; Meng, F. B. 3D porous biomass-derived carbon materials: Biomass sources, controllable transformation and microwave absorption application. Green Chem. 2022, 24, 647–674.
Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.
Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z. X.; Yu, Z. Z. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924.
Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.
Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.
Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.
Zhang, M.; Cao, M. S.; Shu, J. C.; Cao, W. Q.; Li, L.; Yuan, J. Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R: Rep. 2021, 145, 100627.
Cao, M. S.; Shu, J. C.; Wen, B.; Wang, X. X.; Cao, W. Q. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature. Small Struct. 2021, 2, 2100104.
Zhang, P.; Zhu, Q. Z.; Soomro, R. A.; He, S. Y.; Sun, N.; Qiao, N.; Xu, B. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 2020, 30, 2000922.
Lv, W.; Li, Z. J.; Zhou, G. M.; Shao, J. J.; Kong, D. B.; Zheng, X. Y.; Li, B. H.; Li, F.; Kang, F. Y.; Yang, Q. H. Tailoring microstructure of graphene-based membrane by controlled removal of trapped water inspired by the phase diagram. Adv. Funct. Mater. 2014, 24, 3456–3463.
Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.
Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.
Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150.
Lai, D. G.; Chen, X. X.; Wang, Y. Controllable fabrication of elastomeric and porous graphene films with superior foldable behavior and excellent electromagnetic interference shielding performance. Carbon 2020, 158, 728–737.
Song, Z. Q.; Li, W. Y.; Bao, Y.; Kong, H. J.; Gan, S. Y.; Wang, W.; Liu, Z. B.; Ma, Y. M.; Han, D. X.; Niu, L. Space-confined graphene films for pressure-sensing applications. ACS Appl. Nano Mater. 2020, 3, 1731–1740.
Lai, D. G.; Chen, X. X.; Wang, G.; Xu, X. H.; Wang, Y. Highly conductive porous graphene film with excellent folding resilience for exceptional electromagnetic interference shielding. J. Mater. Chem. C 2020, 8, 8904–8916.
Natu, V.; Sokol, M.; Verger, L.; Barsoum, M. W. Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions. J. Phys. Chem. C 2018, 122, 27745–27753.
Qu, D.; Zheng, M.; Zhang, L. G.; Zhao, H. F.; Xie, Z. G.; Jing, X. B.; Haddad, R. E.; Fan, H. Y.; Sun, Z. C. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2014, 4, 5294.
Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M. K.; Hong, S. M.; Han, M. K.; Gogotsi, Y.; Koo, C. M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054.
Choi, H. K.; Lee, A.; Park, M.; Lee, D. S.; Bae, S.; Lee, S. K.; Lee, S. H.; Lee, T.; Kim, T. W. Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding. ACS Nano 2021, 15, 829–839.
Fu, H. L.; Yang, Z. P.; Zhang, Y. Y.; Zhu, M.; Jia, Y. H.; Chao, Z.; Hu, D. M.; Li, Q. W. SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding. Carbon 2020, 162, 490–496.
Zhong, J.; Sun, W.; Wei, Q. W.; Qian, X. T.; Cheng, H. M.; Ren, W. C. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances. Nat. Commun. 2018, 9, 3484.
Kuo, P. Y.; Wang, S. Y.; Chen, J. H.; Hsueh, H. C.; Tsai, M. J. Effects of material compositions on the mechanical properties of wood-plastic composites manufactured by injection molding. Mater. Des. 2009, 30, 3489–3496.
Smorygo, O.; Gokhale, A. A.; Vazhnova, A.; Stefan, A. Ultra-low density epoxy/polystyrene foam composite with high specific strength and pseudo-plastic behavior. Compos. Commun. 2019, 15, 64–67.
Easton, M.; Song, W. Q.; Abbott, T. A comparison of the deformation of magnesium alloys with aluminium and steel in tension, bending and buckling. Mater. Des. 2006, 27, 935–946.
Zhang, M. K.; Zhang, P. J.; Zhang, C. L.; Wang, Y. S.; Chang, H.; Rao, W. Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl. Mater. Today 2020, 19, 100612.
Li, X. P.; Zeng, S. P.; E, S. J.; Liang, L. Y.; Bai, Z. Y.; Zhou, Y. Y.; Zhao, B.; Zhang, R. Quick heat dissipation in absorption-dominated microwave shielding properties of flexible poly(vinylidene fluoride)/carbon nanotube/Co composite films with anisotropy-shaped Co (flowers or chains). ACS Appl. Mater. Interfaces 2018, 10, 40789–40799.
Song, Q.; Ye, F.; Yin, X. W.; Li, W.; Li, H. J.; Liu, Y. S.; Li, K. Z.; Xie, K. Y.; Li, X. H.; Fu, Q. G. et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahighperformance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1701583.
Lalan, V.; Subodh, G. The smallest anions, induced porosity and graphene interfaces in C12A7:e− electrides: A paradigm shift in electromagnetic absorbers and shielding materials. J. Mater. Chem. C 2022, 10, 969–982.
Wang, X. X.; Zhang, M.; Shu, J. C.; Wen, B.; Cao, W. Q.; Cao, M. S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 2021, 184, 136–145.
Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 14, 1800987.
Hart, J. L.; Hantanasirisakul, K.; Lang, A. C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J. T.; May, S. J.; Gogotsi, Y.; Taheri, M. L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522.
Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.
Shui, X. P.; Chung, D. D. L. Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 1997, 26, 928–934.
Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.
Zhou, B.; Zhang, Z.; Li, Y. L.; Han, G. J.; Feng, Y. Z.; Wang, B.; Zhang, D. B.; Ma, J. M.; Liu, C. T. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 2020, 12, 4895–4905.
Yang, R. L.; Gui, X. C.; Yao, L.; Hu, Q. M.; Yang, L. L.; Zhang, H.; Yao, Y. T.; Mei, H.; Tang, Z. K. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nanomicro Lett. 2021, 13, 66.
Liu, R. T.; Miao, M.; Li, Y. H.; Zhang, J. F.; Cao, S. M.; Feng, X. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 44787–44795.
Zhang, L.; Alvarez, N. T.; Zhang, M. X.; Haase, M.; Malik, R.; Mast, D.; Shanov, V. Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 2015, 82, 353–359.
Moglie, F.; Micheli, D.; Laurenzi, S.; Marchetti, M.; Primiani, V. M. Electromagnetic shielding performance of carbon foams. Carbon 2012, 50, 1972–1980.
Crespo, M.; González, M.; Elías, A. L.; Rajukumar, L. P.; Baselga, J.; Terrones, M.; Pozuelo, J. Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys. Status Solidi Rapid Res. Lett. 2014, 8, 698–704.
Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Zhang, Z. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 303–310.
Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for highperformance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.
