Strong Poincaré recurrence theorem in MV-algebras
Tóm tắt
The classical Poincaré strong recurrence theorem states that for any probability space (Ω, ℒ, P), any P-measure preserving transformation T, and any A ∈ ℒ, almost all points of A return to A infinitely many times. In the present paper the Poincaré theorem is proved when the σ-algebra ℒ is substituted by an MV-algebra of a special type. Another approach is used in [RIEČAN, B.: Poincaré recurrence theorem in MV-algebras. In: Proc. IFSA-EUSFLAT 2009 (To appear)], where the weak variant of the theorem is proved, of course, for arbitrary MV-algebras. Such generalizations were already done in the literature, e.g. for quantum logic, see [DVUREČENSKIJ, A.: On some properties of transformations of a logic, Math. Slovaca 26 (1976), 131–137.
Tài liệu tham khảo
Chang, C. C.:Algebraic analysis of multivalued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.
Dvurečenskij, A.: On some properties of transformations of a logic, Math. Slovaca 26 (1976), 131–137.
Dvurečenskij, A.— Pulmannová, S.: New Trends in Quantum Structures, Kluwer, Dordrecht, 2000.
Maličký, P.: Category version of the Poincaré recurrence theorem, Topology Appl. 154 (2007), 2709–2713.
Montagna, F.: An algebraic approach to propositional fuzzy logic, J. Logic Lang. Inform. 9 (2000), 91–124.
Mundici, D.: Interpretation of AFC*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15–63.
Nadkarni, M. G.: Basic Ergodic Theory, Birkhauser Verlag, Basel, 1998.
Poincaré, H.: Les methodes nouvelles de la mecanique classique celeste. Vol. 3, Gauthiers-Villars, Paris, 1899.
Riečan, B.: A note on the Poincaré recurrence theorem on Boolean rings, Mat.-Fyz. Časopis 15 (1965), 13–22 (Russian).
Riečan, B.: On the product MV-algebras, Tatra Mt. Math. Publ. 16 (1999), 143–149.
Riečan, B.: Poincaré recurrence theorem in MV-algebras. In: Proc. IFSA-EUSFLAT 2009 (To appear).
Riečan, B.— Mundici, D.: Probability on MV-algebras. In: Handbook of Measure Theory. Vol. I, II (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 869–909.