Strigolactones: diversity, perception, and hydrolysis

Springer Science and Business Media LLC - Tập 22 - Trang 339-359 - 2023
Angelica M. Guercio1, Malathy Palayam1, Nitzan Shabek1
1Department of Plant Biology, College of Biological Sciences, University of California Davis, Davis, USA

Tóm tắt

Strigolactones (SLs) are a unique and novel class of phytohormones that regulate numerous processes of growth and development in plants. Besides their endogenous functions as hormones, SLs are exuded by plant roots to stimulate critical interactions with symbiotic fungi but can also be exploited by parasitic plants to trigger their seed germination. In the past decade, since their discovery as phytohormones, rapid progress has been made in understanding the SL biosynthesis and signaling pathway. Of particular interest are the diversification of natural SLs and their exact mode of perception, selectivity, and hydrolysis by their dedicated receptors in plants. Here we provide an overview of the emerging field of SL perception with a focus on the diversity of canonical, non-canonical, and synthetic SL probes. Moreover, this review offers useful structural insights into SL perception, the precise molecular adaptations that define receptor-ligand specificities, and the mechanisms of SL hydrolysis and its attenuation by downstream signaling components.

Tài liệu tham khảo

Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A 111(50):18084–18089. https://doi.org/10.1073/pnas.1410801111 Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci U S A 180(50):20242–20247. https://doi.org/10.1073/pnas.1111902108 Ahmad MZ, Rehman NU, Yu S, Zhou Y, Haq BU, Wang J, Li P, Zeng Z, Zhao J (2020) GmMAX2–D14 and –KAI interaction-mediated SL and KAR signaling play essential roles in soybean root nodulation. Plant J 101(2):334–352. https://doi.org/10.1111/tpj.14545 Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827. https://doi.org/10.1038/nature03608 Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186. https://doi.org/10.1146/annurev-arplant-043014-114759 Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348–1351. https://doi.org/10.1126/science.1218094 Arellano-Saab A, Bunsick M, Al Galib H, Zhao W, Schuetz S, Bradley JM, Xu Z, Adityani C, Subha A, McKay H, de Saint GA, Boyer FD, McErlean CSP, Toh S, McCourt P, Stogios PJ, Lumba S (2021) Three mutations repurpose a plant karrikin receptor to a strigolactone receptor. Proc Natl Acad Sci USA 118(30):e2103175118. https://doi.org/10.1073/pnas.2103175118 Arellano-Saab A, McErlean CSP, Lumba S, Savchenko A, Stogios PJ, McCourt P (2022) A novel strigolactone receptor antagonist provides insights into the structural inhibition, conditioning, and germination of the crop parasite Striga. J Biol Chem 298(4):101734. https://doi.org/10.1016/j.jbc.2022.101734 Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) D14, a strigolactone-Insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50(8):1416–1424. https://doi.org/10.1093/pcp/pcp091 Bennett T, Leyser O (2014) Strigolactone signalling: Standing on the shoulders of DWARFs. Curr Opin Plant Biol 22:7–13. https://doi.org/10.1016/j.pbi.2014.08.001 Boyer FD, de Saint GA, Pillot JP, Pouvreau JB, Chen VX, Ramos S, Stévenin A, Simier P, Delavault P, Beau JM, Rameau C (2012) Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: Molecule design for shoot branching. Plant Physiol 159(4):1524–1544. https://doi.org/10.1104/pp.112.195826 Boyer FD, de Saint GA, Pouvreau JB, Clavé G, Pillot JP, Roux A, Rasmussen A, Depuydt S, Lauressergues D, Frei Dit Frey N, Heugebaert TS, Stevens CV, Geelen D, Goormachtig S, Rameau C (2014) New strigolactone analogs as plant hormones with low activities in the rhizosphere. Mol Plant 7(4):675–690. https://doi.org/10.1093/mp/sst163 Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6(1):18–28. https://doi.org/10.1093/mp/sss130 Bürger M, Chory J (2020) The Many Models of Strigolactone Signaling. Trends Plant Sci 25(4):395–405. https://doi.org/10.1016/j.tplants.2019.12.009 Bürger M, Mashiguchi K, Lee HJ, Nakano M, Takemoto K, Seto Y, Yamaguchi S, Chory J (2019) Structural Basis of Karrikin and Non-natural Strigolactone Perception in Physcomitrella patens. Cell Rep 26(4):855-865.e5. https://doi.org/10.1016/j.celrep.2019.01.003 Butler LG (1994) Chemical communication between the parasitic weed Striga and its crop host: a new dimension in allelochemistry. Allelopathy 582(12):158–168. https://doi.org/10.1021/bk-1995-0582.ch012 Bythell-Douglas R, Rothfels CJ, Stevenson DWD, Graham SW, Wong GKS, Nelson DC, Bennett T (2017) Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biol 15(1):52. https://doi.org/10.1186/s12915-017-0397-z Carbonnel S, Torabi S, Griesmann M, Bleek E, Tang Y, Buchka S, Basso V, Shindo M, Boyer FD, Wang TL, Udvardi M, Waters MT, Gutjahr C (2020) Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. PLoS Genet 16(12):e1009249. https://doi.org/10.1371/journal.pgen.1009249 Charnikhova TV, Gaus K, Lumbroso A, Sanders M, Vincken JP, De Mesmaeker A, Ruyter-Spira CP, Screpanti C, Bouwmeester HJ (2017) Zealactones Novel natural strigolactones from maize. Phytochemistry 137:123–131. https://doi.org/10.1016/j.phytochem.2017.02.010 Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (striga lutea lour.): isolation and properties of a potent stimulant. Science 154(3753):1189–1190. https://doi.org/10.1126/science.154.3753.1189 Delaux PM, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Bécard G, Séjalon-Delmas N (2012) Origin of strigolactones in the green lineage. New Phytol 195(4):857–871. https://doi.org/10.1111/j.1469-8137.2012.04209.x Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280. https://doi.org/10.1093/aob/mcp251 Fukui K, Ito S, Ueno K, Yamaguchi S, Kyozuka J, Asami T (2011) New branching inhibitors and their potential as strigolactone mimics in rice. Bioorg Med Chem Lett 21(16):4905–4908. https://doi.org/10.1016/j.bmcl.2011.06.019 Fukui K, Ito S, Asami T (2013) Selective mimics of strigolactone actions and their potential use for controlling damage caused by root parasitic weeds. Mol Plant 6(1):88–89. https://doi.org/10.1093/mp/sss138 Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H, Kanuganti S, Mengiste T, Ejeta G (2017) Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc Natl Acad Sci U S A 114(17):4471–4476. https://doi.org/10.1073/pnas.1618965114 Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194. https://doi.org/10.1038/nature07271 Guercio AM, Torabi S, Cornu D, Dalmais M, Bendahmane A, Le Signor C, Pillot JP, Le Bris P, Boyer FD, Rameau C, Gutjahr C, de Saint GA, Shabek N (2022) Structural and functional analyses explain Pea KAI2 receptor diversity and reveal stereoselective catalysis during signal perception. Commun Biol 5(1):126. https://doi.org/10.1038/s42003-022-03085-6 Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A 111(2):851–856. https://doi.org/10.1073/pnas.1322135111 Hamiaux C, Drummond RSM, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22(21):2032–2036. https://doi.org/10.1016/j.cub.2012.08.007 Hauck C, Müller S, Schildknecht H (1992) A Germination Stimulant for Parasitic Flowering Plants from Sorghum bicolor, a Genuine Host Plant. J Plant Physiol 139(4):474–478. https://doi.org/10.1016/S0176-1617(11)80497-9 Holbrook-Smith D, Toh S, Tsuchiya Y, McCourt P (2016) Small-molecule antagonists of germination of the parasitic plant Striga hermonthica. Nat Chem Biol 12(9):724–729. https://doi.org/10.1038/nchembio.2129 Hu A, Zhao Q, Chen L, Zhao J, Wang Y, Feng K, Wu L, Xie M, Zhou X, Xiao L, Ming Z, Zhang M, Yao R (2021) Identification of conserved and divergent strigolactone receptors in sugarcane reveals a key residue crucial for plant branching control. Front Plant Sci 12:747160. https://doi.org/10.3389/fpls.2021.747160 Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46(1):79–86. https://doi.org/10.1093/pcp/pci022 Jamil M, Kountche BA, Al-Babili S (2021) Current progress in Striga management. Plant Physiol 185(4):1339–1352. https://doi.org/10.1093/plphys/kiab040 Johnson AW, Rosebery G, Parker C (1976) A novel approach to Striga and Orobanche control using synthetic germination stimulants. Weed Res 16(4):223–227. https://doi.org/10.1111/j.1365-3180.1976.tb00406.x Kagiyama M, Hirano Y, Mori T, Kim SY, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18(2):147–160. https://doi.org/10.1111/gtc.12025 Kerr SC, Patil SB, de Saint GA, Pillot JP, Saffar J, Ligerot Y, Aubert G, Citerne S, Bellec Y, Dun EA, Beveridge CA, Rameau C (2021) Integration of the SMXL/D53 strigolactone signalling repressors in the model of shoot branching regulation in Pisum sativum. Plant J 107(6):1756–1770. https://doi.org/10.1111/tpj.15415 Kim HI, Kisugi T, Khetkam P, Xie X, Yoneyema K, Uchida K, Yokota T, Nomura T, McErlean CSP, Yoneyama K (2014) Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. Phytochemistry 103:85–88. https://doi.org/10.1016/j.phytochem.2014.03.030 Lauressergues D, André O, Peng J, Wen J, Chen R, Ratet P, Tadege M, Mysore KS, Rochange SF (2015) Strigolactones contribute to shoot elongation and to the formation of leaf margin serrations in Medicago truncatula R108. J Exp Bot 66(5):1237–1244. https://doi.org/10.1093/jxb/eru471 Lee HW, Sharma P, Janssen BJ, Drummond RSM, Luo Z, Hamiaux C, Collier T, Allison JR, Newcomb RD, Snowden KC (2020) Flexibility of the petunia strigolactone receptor DAD2 promotes its interaction with signaling partners. J Biol Chem 295(13):4181–4193. https://doi.org/10.1074/jbc.RA119.011509 Li S, Joo Y, Cao D, Li R, Lee G, Halitschke R, Baldwin G, Baldwin IT, Wang M (2020) Strigolactone signaling regulates specialized metabolism in tobacco stems and interactions with stem-feeding herbivores. PLoS Biol 18(8):e3000830. https://doi.org/10.1371/JOURNAL.PBIO.3000830 Liu R, Hou J, Li H, Xu P, Zhang Z, Zhang X (2021) Association of tad14-4d, a gene involved in strigolactone signaling, with yield contributing traits in wheat. Int J Mol Sci 22(7):3748. https://doi.org/10.3390/ijms22073748 Mangnus EM, Zwanenburg B (1992) Tentative molecular mechanism for germination stimulation of striga and orobanche seeds by strigol and its synthetic analogues. J Agri Food Chem 40(6):1066–1070. https://doi.org/10.1021/jf00018a032 Mangnus EM, Dommerholt FJ, de Jong RLP, Zwanenburg B (1992) Improved synthesis of strigol analogue GR24 and evaluation of the biological activity of its diastereomers. J Agri Food Chem 40(7):1230–1235. https://doi.org/10.1021/jf00019a031 Marzec M, Gruszka D, Tylec P, Szarejko I (2016) Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare. Physiol Plant 158(3):341–355. https://doi.org/10.1111/ppl.12460 Mashiguchi K, Seto Y, Onozuka Y, Suzuki S, Takemoto K, Wang Y, Dong L, Asami K, Noda R, Kisugi T, Kitaoka N, Akiyama K, Bouwmeester H, Yamaguchi S (2022) A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in Arabidopsis. Proc Natl Acad Sci USA 119(14):e2111565119. https://doi.org/10.1073/pnas.2111565119 Mashita O, Koishihara H, Fukui K, Nakamura H, Asami T (2016) Discovery and identification of 2-methoxy-1-naphthaldehyde as a novel strigolactone-signaling inhibitor. J Pestic Sci 41(3):71–78. https://doi.org/10.1584/jpestics.D16-028 Mindrebo JT, Nartey CM, Seto Y, Burkart MD, Noel JP (2016) Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Curr Opin Struct Biol 41:233–246. https://doi.org/10.1016/j.sbi.2016.08.005 Mohemed N, Charnikhova T, Bakker EJ, van Ast A, Babiker AG, Bouwmeester HJ (2016) Evaluation of field resistance to Striga hermonthica (Del) Benth in Sorghum bicolor (L) Moench The relationship with strigolactones. Pest Manag Sci 72(11):2082–2090. https://doi.org/10.1002/ps.4426 Mori K, Matsui J, Yokota T, Sakai H, Bando M, Takeuchi Y (1999) Structure and synthesis of orobanchol, the germination stimulant for Orobanche minor. Tetrahedron Lett 40(5):943–946. https://doi.org/10.1016/S0040-4039(98)02495-2 Mori N, Nomura T, Akiyama K (2020a) Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus. Planta 251(2):40. https://doi.org/10.1007/s00425-019-03332-x Mori N, Sado A, Xie X, Kaori Y, Asami K, Seto Y, Nomura T, Yamaguchi S, Koichi Y, Akiyama K (2020b) Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus. Phytochemistry 174:112349. https://doi.org/10.1016/j.phytochem.2020.112349 Motonami N, Ueno K, Nakashima H, Nomura S, Mizutani M, Takikawa H, Sugimoto Y (2013) The bioconversion of 5-deoxystrigol to sorgomol by the sorghum, Sorghum bicolor (L.) Moench. Phytochemistry 93:41–48. https://doi.org/10.1016/j.phytochem.2013.02.017 Müller S, Hauck C, Schildknecht H (1992) Germination stimulants produced by Vigna unguiculata Walp cv Saunders Upright. J Plant Growth Regul 11(77). https://doi.org/10.1007/BF00198018. Nakamura H, Hirabayashi K, Miyakawa T, Kikuzato K, Hu W, Xu Y, Jiang K, Takahashi I, Niiyama R, Dohmae N, Tanokura M, Asami T (2019) Triazole Ureas Covalently Bind to Strigolactone Receptor and Antagonize Strigolactone Responses. Mol Plant 12(1):44–58. https://doi.org/10.1016/j.molp.2018.10.006 Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun. https://doi.org/10.1038/ncomms3613 Nefkens GHL, Thuring JWJF, Beenakkers MFM, Zwanenburg B (1997) Synthesis of a phthaloylglycine-derived strigol analogue and its germination stimulatory activity toward seeds of the parasitic weeds striga hermonthica and orobanche crenata. J Agri Food Chem 45(6):2273–2277. https://doi.org/10.1021/jf9604504 Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108(21):8897–8902. https://doi.org/10.1073/pnas.1100987108 Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J (1992) The alpha/beta hydrolase fold. Protein Eng 5(3):197–211 Omoarelojie LO, Kulkarni MG, Finnie JF, Van Staden J (2019) Strigolactones and their crosstalk with other phytohormones. Ann Bot 124(5):749–767. https://doi.org/10.1093/aob/mcz100 Parker C (2009) Observations on the current status of orobanche and striga problems worldwide. Pest Manag Sci 65(5):453–459. https://doi.org/10.1002/ps.1713 Pasare SA, Ducreux LJM, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG, Fraser PD, Taylor MA (2013) The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol 198(4):1108–1120. https://doi.org/10.1111/nph.12217 Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10(4):393–398. https://doi.org/10.1016/j.pbi.2007.05.004 Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18(2):72–83. https://doi.org/10.1016/j.tplants.2012.10.003 de Saint Germain A, Jacobs A, Brun G, Pouvreau JB, Braem L, Cornu D, Clavé G, Baudu E, Steinmetz V, Servajean V, Wicke S, Gevaert K, Simier P, Goormachtig S, Delavault P, Boyer FD (2021) A Phelipanche ramosa KAI2 protein perceives strigolactones and isothiocyanates enzymatically. Plant Commun 2(5):100166. https://doi.org/10.1016/j.xplc.2021.100166 de Saint Germain A, Clavé G, Schouveiler P, Pillot JP, Singh AV, Chevalier A, Daignan Fornier S, Guillory A, Bonhomme S, Rameau C, Boyer FD (2022) Expansion of the strigolactone profluorescent probes repertory: the right probe for the right application. Front Plant Sci 13:887347. https://doi.org/10.3389/fpls.2022.887347 de Saint Germain A, Clavé G, Badet-Denisot MA, Pillot JP, Cornu D, Le Caer JP, Burger M, Pelissier F, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer FD (2016) An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol 12(10):787–794. https://doi.org/10.1038/nchembio.2147 Samejima H, Babiker AG, Takikawa H, Sasaki M, Sugimoto Y (2016) Practicality of the suicidal germination approach for controlling Striga hermonthica. Pest Manag Sci 72(11):2035–2042. https://doi.org/10.1002/ps.4215 Scaffidi A, Waters MT, Bond CS, Dixon KW, Smith SM, Ghisalberti EL, Flematti GR (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorg Medi Chem Lett 22(11):3743–3746. https://doi.org/10.1016/j.bmcl.2012.04.016 Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165(3):1221–1232. https://doi.org/10.1104/pp.114.240036 Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci U S A 111(4):1640–1645. https://doi.org/10.1073/pnas.1314805111 Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, Umehara M, Seo E, Akiyama K, Burke J, Takeda-Kamiya N, Li W, Hirano Y, Hakoshima T, Mashiguchi K, Noel JP, Kyozuka J, Yamaguchi S (2019) Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nature Commun 10(1):191. https://doi.org/10.1038/s41467-018-08124-7 Shabek N, Ticchiarelli F, Mao H, Hinds TR, Leyser O, Zheng N (2018) Structural plasticity of D3–D14 ubiquitin ligase in strigolactone signalling. Nature 563(7733):652–656. https://doi.org/10.1038/s41586-018-0743-5 Shahul Hameed U, Haider I, Jamil M, Guo X, Zarban RA, Kim D, Al-Babili S, Arold ST (2022) Structural basis for specific inhibition of the highly sensitive ShHTL7 receptor. EMBO Rep 19(9):e45619. https://doi.org/10.15252/embr.201745619 Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008) Structural basis for gibberellin recognition by its receptor GID1. Nature 456(7221):520–523. https://doi.org/10.1038/nature07546 Smith SM, Li J (2014) Signalling and responses to strigolactones and karrikins. Curr Opin Plant Biol 21:23–29. https://doi.org/10.1016/j.pbi.2014.06.003 Sobecks BL, Chen J, Shukla D (2022) Dual Role of Strigolactone Receptor Signaling Partner in Inhibiting Substrate Hydrolysis. J Phys Chem B 126(11):2188–2195. https://doi.org/10.1021/acs.jpcb.1c10663 Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell 27(11):3143–3159. https://doi.org/10.1105/tpc.15.00562 Stanic M, Hickerson NMN, Arunraj R, Samuel MA (2021) Gene-editing of the strigolactone receptor BnD14 confers promising shoot architectural changes in Brassica napus (canola). Plant Biotechnol J 19(4):639–641. https://doi.org/10.1111/pbi.13513 Takahashi I, Asami T (2018) Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture. J Exp Bot 69(9):2241–2254. https://doi.org/10.1093/jxb/ery126 Takahashi I, Fukui K, Asami T (2016) Chemical modification of a phenoxyfuranone-type strigolactone mimic for selective effects on rice tillering or Striga hermonthica seed germination. Pest Manag Sci 72(11):2048–2053. https://doi.org/10.1002/ps.4265 Takeuchi J, Jiang K, Hirabayashi K, Imamura Y, Wu Y, Xu Y, Miyakawa T, Nakamura H, Tanokura M, Asami T (2018) Rationally designed strigolactone analogs as antagonists of the D14 receptor. Plant Cell Physiol 59(8):1545–1554. https://doi.org/10.1093/pcp/pcy087 Tal L, Palayam M, Ron M, Young A, Britt A, Shabek N (2022) A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactone signalling. Nat Plants 8(5):561–573. https://doi.org/10.1038/s41477-022-01145-7 Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 30: computed atlas of surface topography of proteins. Nucleic Acids Res 46(W1):W363–W367. https://doi.org/10.1093/nar/gky473 Toh S, Holbrook-Smith D, Stokes ME, Tsuchiya Y, McCourt P (2014) Detection of parasitic plant suicide germination compounds using a high-throughput Arabidopsis HTL/KAI2 strigolactone perception system. Chem Biol 21(8):988–998. https://doi.org/10.1016/j.chembiol.2014.07.005 Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S, Tsuchiya Y, Savchenko A, McCourt P (2015) Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350(6257):203–207. https://doi.org/10.1126/science.aac9476 Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, McCourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6(10):741–749. https://doi.org/10.1038/nchembio.435 Tsuchiya Y, Yoshimura M, Sato Y, Kuwata K, Toh S, Holbrook-Smith D, Zhang H, McCourt P, Itami K, Kinoshita T, Hagihara S (2015) Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349(6250):864–868. https://doi.org/10.1126/science.aab3831 Ueno K, Furumoto T, Umeda S, Mizutani M, Takikawa H, Batchvarova R, Sugimoto Y (2014) Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry 108:122–128. https://doi.org/10.1016/j.phytochem.2014.09.018 Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455(7210):195–200. https://doi.org/10.1038/nature07272 Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y, Hanada A, Li W, Takeda-Kamiya N, Morimoto Y, Yamaguchi S (2014) Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant Cell Physiol 56(6):1059–1072. https://doi.org/10.1093/pcp/pcv028 Wakabayashi T, Shida K, Kitano Y, Takikawa H, Mizutani M, Sugimoto Y (2020) CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta 251(5):97. https://doi.org/10.1007/s00425-020-03390-6 Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y (2019) Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci Adv 5(12):eaax9067. https://doi.org/10.1126/sciadv.aax9067 Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Lia J (2015) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation. Plant Cell 27(11):3128–3142. https://doi.org/10.1105/tpc.15.00605 Wang DW, Yu SY, Pang ZL, Ma DJ, Liang L, Wang X, Wei T, Yang HZ, Ma YQ, Xi Z (2021) Discovery of a Broad-Spectrum Fluorogenic Agonist for Strigolactone Receptors through a Computational Approach. J Agric Food Chem 69(36):10486–10495. https://doi.org/10.1021/acs.jafc.1c03471 Wang P, Zhang S, Qiao J, Sun Q, Shi Q, Cai C, Mo J, Chu Z, Yuan Y, Du X, Miao Y, Zhang X, Cai Y (2019) Functional analysis of the GbDWARF14 gene associated with branching development in cotton. PeerJ 14(7):e6901. https://doi.org/10.7717/peerj.6901 Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139(7):1285–1295. https://doi.org/10.1242/dev.074567 Wen C, Xi L, Gao B, Wang K, Lv S, Kou Y, Ma N, Zhao L (2015) Roles of DgD14 in regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum ‘Jinba’). Plant Physiol Biochem 96:241–253. https://doi.org/10.1016/j.plaphy.2015.07.030 Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15(4):227–235. https://doi.org/10.1016/j.tplants.2010.01.004 White ARF, Mendez JA, Khosla A, Nelson DC (2022) Rapid analysis of strigolactone receptor activity in a Nicotiana benthamiana dwarf14 mutant. Plant Direct 6(3):e389. https://doi.org/10.1002/pld3.389 Xie X, Kusumoto D, Takeuchi Y, Kaori Y, Yamada Y, Koichi Y (2007) 2′-Epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55(20):8067–8072. https://doi.org/10.1021/jf0715121 Xie X, Kisugi T, Kaori Y, Nomura T, Akiyama K, Uchida K, Yokota T, McErlean CSP, Koichi Y (2017) Methyl zealactonoate, a novel germination stimulant for root parasitic weeds produced by maize. J Pestic Sci 42(2):58–61. https://doi.org/10.1584/jpestics.D16-103 Xie X, Mori N, Kaori Y, Nomura T, Uchida K, Koichi Y, Akiyama K (2019) Lotuslactone, a non-canonical strigolactone from Lotus japonicus. Phytochemistry 157:200–205. https://doi.org/10.1016/j.phytochem.2018.10.034 Xu Y, Miyakawa T, Nosaki S, Nakamura A, Lyu Y, Nakamura H, Ohto U, Ishida H, Shimizu T, Asami T, Tanokura M (2018) Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga. Nat Commun 9(1):3947. https://doi.org/10.1038/s41467-018-06452-2 Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, Li Y, Yan C, Miao D, Sun Z, Yan J, Sun Y, Wang L, Chu J, Fan S, He W, Deng H, Nan F, Li J, Rao Z, Lou Z, Xie D (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536(7617):469–473. https://doi.org/10.1038/nature19073 Yao R, Wang F, Ming Z, Du X, Chen L, Wang Y, Zhang W, Deng H, Xie D (2017) ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds. Cell Res 27(6):838–841. https://doi.org/10.1038/cr.2017.3 Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49(7):1967–1973. https://doi.org/10.1016/S0031-9422(98)00419-1 Yoneyama K, Brewer PB (2021) Strigolactones, how are they synthesized to regulate plant growth and development? Curr Opin Plant Biol 63:102072. https://doi.org/10.1016/j.pbi.2021.102072 Yoneyama K, Xie X, Yoneyama K, Kisugi T, Nomura T, Nakatani Y, Akiyama K, McErlean CSP (2018) Which are the major players, canonical or non-canonical strigolactones? J Exp Bot 69(9):2231–2239. https://doi.org/10.1093/jxb/ery090 Yoneyama K, Akiyama K, Brewer PB, Mori N, Kawano-Kawada M, Haruta S, Nishiwaki H, Yamauchi S, Xie X, Umehara M, Beveridge CA, Yoneyama K, Nomura T (2020) Hydroxyl carlactone derivatives are predominant strigolactones in Arabidopsis. Plant Direct 4(5):e00219. https://doi.org/10.1002/pld3.219 Zhang Y, van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10(12):1028–1033. https://doi.org/10.1038/nchembio.1660 Zhao LH, Zhou XE, Wu ZS, Yi W, Xu Y, Li S, Xu TH, Liu Y, Chen RZ, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu HE (2013) Crystal structures of two phytohormone signal-transducing α/β hydrolases: Karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Res 23(3):436–439. https://doi.org/10.1038/cr.2013.19 Zheng K, Wang X, Weighill DA, Guo HB, Xie M, Yang Y, Yang J, Wang S, Jacobson DA, Guo H, Muchero W, Tuskan GA, Chen JG (2016) Characterization of DWARF14 Genes in Populus. Sci Rep 6:21593. https://doi.org/10.1038/srep21593 Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J (2013) D14-SCF D3 -dependent degradation of D53 regulates strigolactone signalling. Nature 504(7480):406–410. https://doi.org/10.1038/nature12878 Zorrilla JG, Rial C, Varela RM, Molinillo JMG, Macías FA (2022) Strategies for the synthesis of canonical, non-canonical and analogues of strigolactones, and evaluation of their parasitic weed germination activity. Phytochem Rev 21:1627–1659. https://doi.org/10.1007/s11101-022-09801-8 Zwanenburg B, Mwakaboko AS (2011) Strigolactone analogues and mimics derived from phthalimide, saccharine, p-tolylmalondialdehyde, benzoic and salicylic acid as scaffolds. Bioorg Med Chem 19(24):7394–7400. https://doi.org/10.1016/j.bmc.2011.10.057 Zwanenburg B, Pospíšil T (2013) Structure and activity of strigolactones: New plant hormones with a rich future. Mol Plant 6(1):38–62. https://doi.org/10.1093/mp/sss141 Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009) Structure and function of natural and synthetic signalling molecules in parasitic weed germination. Pest Manag Sci 65(5):478–491. https://doi.org/10.1002/ps.1706 Zwanenburg B, Ćavar Zeljković S, Pospíšil T (2016a) Synthesis of strigolactones, a strategic account. Pest Manag Sci 72(3):637. https://doi.org/10.1002/ps.4105 Zwanenburg B, Pospíšil T, Ćavar Zeljković S (2016b) Strigolactones: new plant hormones in action. Planta 243(6):1311–1326. https://doi.org/10.1007/s00425-015-2455-5