Stretching out the Australasian microtektite strewn field in Victoria Land Transantarctic Mountains
Tóm tắt
Từ khóa
Tài liệu tham khảo
Artemieva, 2008, High-velocity impact ejecta: tektites and Martian meteorites, 267
Artemieva, 2002, Numerical modeling of tektite origin in oblique impacts: implication to Ries-Moldavites strewn field, Bull. Czech Geol. Surv., 77, 303
Burns, 1989, Timing between a large impact and a geomagnetic reversal and the depth of NRM acquisition in deep-sea sediments, 253
Carcaillet, 2003, Geomagnetic moment instability between 0.6 and 1.3 Ma from cosmonuclide evidence, Geophys. Res. Lett, 30, 1792,, 10.1029/2003GL017550
Folco, 2008, Microtektites from Victoria Land Transantarctic Mountains, Geology, 36, 291, 10.1130/G24528A.1
Folco, 2009, Transantarctic Mountain microtektites. Geochemical affinity with Australasian microtektites, Geochim. Cosmochim. Acta, 73, 3694, 10.1016/j.gca.2009.03.021
Folco, 2010, A common volatilization trend in Transantarctic Mountain and Australasian microtektites: implications for their formation model and parent crater location, Earth Planet. Sci. Lett., 293, 135, 10.1016/j.epsl.2010.02.037
Folco, 2010, Shocked quartz and other mineral inclusions in Australasian microtektites, Geology, 38, 211, 10.1130/G30512.1
Folco, 2011, Fission track age of the Transantarctic Mountain microtektites, Geochim. Cosmochim. Acta, 75, 2356, 10.1016/j.gca.2011.02.014
Gentner, 1970, Fission track ages and ages of deposition of deep-sea microtektites, Science, 168, 359, 10.1126/science.168.3929.359
Glass, 1990, Tektites and microtektites: key facts and inferences, Tectonophysics, 171, 393, 10.1016/0040-1951(90)90112-L
Glass, 1994, Geographic variation in Australasian microtektite concentrations: implications concerning the location and size of the source crater, J. Geophys. Res., 99, 19075, 10.1029/94JE01866
Glass, 2004, Geochemistry of Cenozoic microtektites and clinopyroxene-bearing spherules, Geochim. Cosmochim. Acta, 68, 3971, 10.1016/j.gca.2004.02.026
Glass, 2006, Australasian microtektites and associated impact ejecta in the South China Sea and the Middle Pleistocene supereruption of Toba, Meteorit. Planet. Sci., 41, 305, 10.1111/j.1945-5100.2006.tb00211.x
Glass, 2013
Harvey, 2003, The origin and significance of Antarctic meteorites, Chem. Erd., 63, 93, 10.1078/0009-2819-00031
Hinton, 1999, NIST SRM 610, 611 and SRM 612, 613 multi-element glasses: constraints from element abundance ratios measured by microprobe techniques, Geostand. Newslett., 23, 197, 10.1111/j.1751-908X.1999.tb00574.x
Höfle, 1989, The glacial history of the outback Nunataks area in western North Victoria land, Geol. Jahrb., E38, 335
Izett, 1992, Laser-fusion 40Ar/39Ar ages of Australasian tekties [abs], Lunar Planet. Sci., 23, 1539
Koeberl, 1994, Tektite origin by hypervelocity asteroidal or cometary impact: target rocks, source craters, and mechanisms, Geol. Soc. Am. Spec. Pap., 293, 133
Lee, 2000, Australasian microtektites in the South China Sea and the West Philippine Sea: implications for age, size, and location of the impact crater, Meteorit. Planet. Sci., 35, 1151, 10.1111/j.1945-5100.2000.tb01504.x
Ma, 2004, Beryllium-10 in Australasian tektites: constraints on the location of the source crater, Geochim. Cosmochim. Acta, 68, 3883, 10.1016/j.gca.2004.03.026
Melosh, 1989, 245
Montanari, 2000, 364
Nishiizumi, 1991, Cosmic ray produced 10Be and 26A1 in Antarctic rocks: exposure and erosion history, Earth Planet. Sci. Lett., 104, 440, 10.1016/0012-821X(91)90221-3
Pouchou, 1991, Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘‘PAP”, 31
Prasad, 2007, New sites of Australasian microtektites in the central Indian Ocean: implications for the location and size of source crater, J. Geophys. Res., 112, E06007, 10.1029/2006JE002857
Rochette, 2008, Micrometeorites from the Transantarctic mountains, Proc. Natl. Ac. Sci. U. S. A., 105, 18206, 10.1073/pnas.0806049105
Suganuma, 2011, Post-depositional remanent magnetization lock-in for marine sediments deduced from 10Be and paleomagnetic records through the Matuyama–Brunhes boundary, Earth Planet. Sci. Lett., 311, 39, 10.1016/j.epsl.2011.08.038
Schneider, 1992, A detail chronology of the Australasian impact event, the Brunhes-Matuyama geomagnetic polarity reversal, and global climate change, Can. J. Earth Sci., 111, 395
Schultz, 1990, Ice movement and mass balance at the Allan Hills Icefield, Ant. J. U. S., 25, 90
Taylor, 1995, The geochemical evolution of the continental crust, Rev. Geophys., 32, 241, 10.1029/95RG00262
Trieloff, 2007, 40Ar–39Ar ages of Australasian tektites [abs], Meteorit. Planet. Sci., 42, A150
Valet, 2014, Geomagnetic, cosmogenic and climatic changes across the last geomagnetic reversal from Equatorial Indian Ocean sediments, Earth Planet. Sci. Lett., 397, 67, 10.1016/j.epsl.2014.03.053
van Achterbergh, 2001, Data reduction software for LA-ICP-MS: appendix, 29, 239
van der Wateren, 1996, Glaciation and deglaciation of the uplifted margins of the Cenozoic west Antarctic rift system, Ross sea, Antarctica, Geol. Jahrb. Reihe, B89, 123
van der Wateren, 1999, Contrasting Neogene denudation histories of different structural regions in the Transantarctic Mountains rift flank constrained by cosmogenic isotope measurements, Glob. Planet. Change, 23, 145, 10.1016/S0921-8181(99)00055-7
van Ginneken, 2015, Microtektites from the Larkman Nunatak, Transantarctic mountains
Wasson, 2003, Large aerial bursts: an important class of terrestrial accretionary events, Astrobiology, 3, 163, 10.1089/153110703321632499