Stress rupture anisotropy of a Ru-containing fourth-generation single crystal superalloy at 760 °C and 1100 °C

Materials Science and Engineering: A - Tập 856 - Trang 144006 - 2022
Y.M. Li1,2, Z.H. Tan1,2, X.G. Wang2, Y. Mu2, H.C. Zhao3, H.B. Tan3, J.L. Liu2, B. Wang3, J.G. Li2, Y.Z. Zhou2, X.F. Sun2
1School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3Institute of Sichuan Gas Turbine Research, Aero Engine Corporation of China, Chengdu, 610500, China

Tài liệu tham khảo

Reed, 2008 Reed, 2009, Alloys-By-Design: application to nickel-based single crystal superalloys, Acta Mater., 57, 5898, 10.1016/j.actamat.2009.08.018 Miner, 1986, Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy René N4: Part III. Tension-compression anisotropy, Metall. Mater. Trans., 17, 497, 10.1007/BF02643956 Yu, 2013, Orientation dependence of creep properties and deformation mechanism in DD6 single crystal superalloy at 760°C and 785MPa, Mater. Sci. Eng., A, 560, 47, 10.1016/j.msea.2012.08.135 Sass, 1994, On the orientation dependence of the intermediate-temperature creep behavior of a monocrystalline nickel-base superalloy, Scripta Metall. Mater., 31, 885, 10.1016/0956-716X(94)90497-9 Li, 2019, Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850 °C, Mater. Sci. Eng., 760, 26, 10.1016/j.msea.2019.05.075 Sass, 1996, Anisotropic creep properties of the nickel-base superalloy CMSX-4, Acta Mater., 44, 1967, 10.1016/1359-6454(95)00315-0 Liu, 2008, Anisotropy of stress rupture properties of a Ni base single crystal superalloy at two temperatures, Mater. Sci. Eng., A, 479, 277, 10.1016/j.msea.2007.07.050 Han, 2010, Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99, Mater. Sci. Eng., A, 527, 5383, 10.1016/j.msea.2010.05.051 Mackay, 1982, The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals, Metall. Trans. A, 13, 1747, 10.1007/BF02647830 Gunturi, 2000, Anisotropic creep in CMSX-4 in orientations distant from ⟨001, Mater. Sci. Eng., A, 289, 289, 10.1016/S0921-5093(00)00829-7 Jácome, 2013, High-temperature and low-stress creep anisotropy of single-crystal superalloys, Acta Mater., 61, 2926, 10.1016/j.actamat.2013.01.052 Zitara, 2011, Microstructure stability of 4th generation single crystal superalloy, PWA 1497, during high temperature creep deformation, Mater. Trans., 52, 336, 10.2320/matertrans.MB201003 Zhang, 2003, Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138, Scripta Mater., 48, 287, 10.1016/S1359-6462(02)00379-2 Wu, 2020, Unveiling the Re effect in Ni-based single crystal superalloys, Nat. Commun., 11, 389, 10.1038/s41467-019-14062-9 Huang, 2014, Coupling between Re segregation and γ/γ′ interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy, Acta Mater., 76, 294, 10.1016/j.actamat.2014.05.033 Sato, 2006, The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys, Scripta Mater., 54, 1679, 10.1016/j.scriptamat.2006.01.003 Heckl, 2011, Reasons for the enhanced phase stability of Ru-containing nickel-based superalloys, Acta Mater., 59, 6563, 10.1016/j.actamat.2011.07.002 Wang, 2015, Effects of temperature and stress on microstructural evolution during creep deformation of Ru‐free and Ru‐containing single crystal superalloys, Adv. Eng. Mater., 17, 1034, 10.1002/adem.201400400 Feller-Kniepmeier, 1994, [011] Creep in a single crystal nickel base superalloy at 1033 K, Acta Metall. Mater., 42, 3167, 10.1016/0956-7151(94)90415-4 Kuttner, 1994, Microstructure of a nickel-base superalloy after creep in [011] orientation at 1173 K - ScienceDirect, Mater. Sci. Eng., A, 188, 147, 10.1016/0921-5093(94)90366-2 Volkl, 1994, Analysis of matrix and interfacial dislocations in the nickel base superalloy CMSX-4 after creep in [111] direction, Scripta Metall. Mater., 31, 1481, 10.1016/0956-716X(94)90060-4 Yu, 2013, Microstructure evolution and creep behavior of a [111] oriented single crystal nickel-based superalloy during tensile creep, Mater. Sci. Eng., A, 565, 292, 10.1016/j.msea.2012.12.015 Ma, 2007, Development of γ phase stacking faults during high temperature creep of Ru-containing single crystal superalloys, Acta Mater., 55, 5802, 10.1016/j.actamat.2007.06.042 Z.C. Ge, G. Xie, Y.Z. Lu. et al, Influence of Ta on the intermediate temperature creep behavior of a single crystal superalloy, Materials Science & Engineering A. 831 (202), https://doi.org/10.1016/j.msea.2021.142160. Eggeler, 2021, Precipitate shearing, fault energies, and solute segregation to planar faults in Ni-, CoNi-, and Co-base superalloys, Annu. Rev. Mater. Res., 51, 209, 10.1146/annurev-matsci-102419-011433 Knowles, 2003, Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4, Mater. Sci. Eng., A, 340, 88, 10.1016/S0921-5093(02)00172-7 Chen, 2003 Viswanathan, 2005, Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT, Acta Mater., 53, 3041, 10.1016/j.actamat.2005.03.017 Kear, 1970, Stacking faults in gamma prime Ni3(Al,Ti) precipitation hardened nickel-base alloys, Metall. Trans. A, 1, 2477, 10.1007/BF03038373 Chenggang Tian, 2014, 316 Drew, 2004 Wang, 2016, High temperature stress rupture anisotropy of a Ni-based single crystal superalloy, J. Mater. Sci. Technol., 32, 5, 10.1016/j.jmst.2016.08.018 Hobbs, 2008, The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal nickel-base superalloys, Mater. Sci. Eng., A, 489, 65, 10.1016/j.msea.2007.12.045 Jácome, 2014, On the nature of γ′ phase cutting and its effect on high temperature and low stress creep anisotropy of Ni-base single crystal superalloys, Acta Mater., 69, 246, 10.1016/j.actamat.2014.01.021 Li, 2020, Anisotropic stress rupture properties of a 3rd-generation nickel-based single-crystal superalloy at 1100 °C/150 MPa, Acta Metall. Sin., 13