Stress rupture anisotropy of a Ru-containing fourth-generation single crystal superalloy at 760 °C and 1100 °C
Tài liệu tham khảo
Reed, 2008
Reed, 2009, Alloys-By-Design: application to nickel-based single crystal superalloys, Acta Mater., 57, 5898, 10.1016/j.actamat.2009.08.018
Miner, 1986, Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy René N4: Part III. Tension-compression anisotropy, Metall. Mater. Trans., 17, 497, 10.1007/BF02643956
Yu, 2013, Orientation dependence of creep properties and deformation mechanism in DD6 single crystal superalloy at 760°C and 785MPa, Mater. Sci. Eng., A, 560, 47, 10.1016/j.msea.2012.08.135
Sass, 1994, On the orientation dependence of the intermediate-temperature creep behavior of a monocrystalline nickel-base superalloy, Scripta Metall. Mater., 31, 885, 10.1016/0956-716X(94)90497-9
Li, 2019, Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850 °C, Mater. Sci. Eng., 760, 26, 10.1016/j.msea.2019.05.075
Sass, 1996, Anisotropic creep properties of the nickel-base superalloy CMSX-4, Acta Mater., 44, 1967, 10.1016/1359-6454(95)00315-0
Liu, 2008, Anisotropy of stress rupture properties of a Ni base single crystal superalloy at two temperatures, Mater. Sci. Eng., A, 479, 277, 10.1016/j.msea.2007.07.050
Han, 2010, Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99, Mater. Sci. Eng., A, 527, 5383, 10.1016/j.msea.2010.05.051
Mackay, 1982, The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals, Metall. Trans. A, 13, 1747, 10.1007/BF02647830
Gunturi, 2000, Anisotropic creep in CMSX-4 in orientations distant from ⟨001, Mater. Sci. Eng., A, 289, 289, 10.1016/S0921-5093(00)00829-7
Jácome, 2013, High-temperature and low-stress creep anisotropy of single-crystal superalloys, Acta Mater., 61, 2926, 10.1016/j.actamat.2013.01.052
Zitara, 2011, Microstructure stability of 4th generation single crystal superalloy, PWA 1497, during high temperature creep deformation, Mater. Trans., 52, 336, 10.2320/matertrans.MB201003
Zhang, 2003, Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138, Scripta Mater., 48, 287, 10.1016/S1359-6462(02)00379-2
Wu, 2020, Unveiling the Re effect in Ni-based single crystal superalloys, Nat. Commun., 11, 389, 10.1038/s41467-019-14062-9
Huang, 2014, Coupling between Re segregation and γ/γ′ interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy, Acta Mater., 76, 294, 10.1016/j.actamat.2014.05.033
Sato, 2006, The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys, Scripta Mater., 54, 1679, 10.1016/j.scriptamat.2006.01.003
Heckl, 2011, Reasons for the enhanced phase stability of Ru-containing nickel-based superalloys, Acta Mater., 59, 6563, 10.1016/j.actamat.2011.07.002
Wang, 2015, Effects of temperature and stress on microstructural evolution during creep deformation of Ru‐free and Ru‐containing single crystal superalloys, Adv. Eng. Mater., 17, 1034, 10.1002/adem.201400400
Feller-Kniepmeier, 1994, [011] Creep in a single crystal nickel base superalloy at 1033 K, Acta Metall. Mater., 42, 3167, 10.1016/0956-7151(94)90415-4
Kuttner, 1994, Microstructure of a nickel-base superalloy after creep in [011] orientation at 1173 K - ScienceDirect, Mater. Sci. Eng., A, 188, 147, 10.1016/0921-5093(94)90366-2
Volkl, 1994, Analysis of matrix and interfacial dislocations in the nickel base superalloy CMSX-4 after creep in [111] direction, Scripta Metall. Mater., 31, 1481, 10.1016/0956-716X(94)90060-4
Yu, 2013, Microstructure evolution and creep behavior of a [111] oriented single crystal nickel-based superalloy during tensile creep, Mater. Sci. Eng., A, 565, 292, 10.1016/j.msea.2012.12.015
Ma, 2007, Development of γ phase stacking faults during high temperature creep of Ru-containing single crystal superalloys, Acta Mater., 55, 5802, 10.1016/j.actamat.2007.06.042
Z.C. Ge, G. Xie, Y.Z. Lu. et al, Influence of Ta on the intermediate temperature creep behavior of a single crystal superalloy, Materials Science & Engineering A. 831 (202), https://doi.org/10.1016/j.msea.2021.142160.
Eggeler, 2021, Precipitate shearing, fault energies, and solute segregation to planar faults in Ni-, CoNi-, and Co-base superalloys, Annu. Rev. Mater. Res., 51, 209, 10.1146/annurev-matsci-102419-011433
Knowles, 2003, Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4, Mater. Sci. Eng., A, 340, 88, 10.1016/S0921-5093(02)00172-7
Chen, 2003
Viswanathan, 2005, Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT, Acta Mater., 53, 3041, 10.1016/j.actamat.2005.03.017
Kear, 1970, Stacking faults in gamma prime Ni3(Al,Ti) precipitation hardened nickel-base alloys, Metall. Trans. A, 1, 2477, 10.1007/BF03038373
Chenggang Tian, 2014, 316
Drew, 2004
Wang, 2016, High temperature stress rupture anisotropy of a Ni-based single crystal superalloy, J. Mater. Sci. Technol., 32, 5, 10.1016/j.jmst.2016.08.018
Hobbs, 2008, The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal nickel-base superalloys, Mater. Sci. Eng., A, 489, 65, 10.1016/j.msea.2007.12.045
Jácome, 2014, On the nature of γ′ phase cutting and its effect on high temperature and low stress creep anisotropy of Ni-base single crystal superalloys, Acta Mater., 69, 246, 10.1016/j.actamat.2014.01.021
Li, 2020, Anisotropic stress rupture properties of a 3rd-generation nickel-based single-crystal superalloy at 1100 °C/150 MPa, Acta Metall. Sin., 13