Stress corrosion cracking behavior of PH13-8Mo stainless steel in Cl− solutions

Springer Science and Business Media LLC - Tập 24 - Trang 282-289 - 2017
Qiang Yu1,2, Chao-fang Dong1, Jian-xiong Liang2, Zhen-bao Liu2, Kui Xiao1, Xiao-gang Li1
1Corrosion and Protection Center, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
2Institute for Special Steel, Central Iron and Steel Research Institute, Beijing, China

Tóm tắt

The stress corrosion cracking (SCC) behavior of PH13-8Mo precipitation hardening stainless steel (PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile (SSRT) test at various applied potentials. Fracture morphology, elongation ratio, and percentage reduction of area were measured to evaluate the SCC susceptibility. A critical concentration of 1.0 mol/L neutral NaCl existed for SCC of PH13-8Mo steel. Significant SCC emerged when the applied potential was more negative than—0.15 VSCE, and the SCC behavior was controlled by an anodic dissolution (AD) process. When the applied potential was lower than—0.55 VSCE, an obvious hydrogen-fracture morphology was observed, which indicated that the SCC behavior was controlled by hydrogen-induced cracking (HIC). Between —0.15 and —0.35 VSCE, the applied potential exceeded the equilibrium hydrogen evolution potential in neutral NaCl solutions and the crack tips were of electrochemical origin in the anodic region; thus, the SCC process was dominated by the AD mechanism.

Tài liệu tham khảo

A. Abad, M. Hahn, O. S. Es-Said, Eng. Fail. Anal. 17 (2010) 208–212. A. K. Jha, K. Sreekumar, P. P. Sinha, Eng. Fail. Anal. 17 (2010) 1195–1204. W. H. Yuan, X. H. Gong, Y. Q. Sun, J. Iron Steel Res. Int. 23 (2016) 401–408. W. Jiang, K. Y. Zhao, D. Ye, J. Li, Z. D. Li, J. Su, J. Iron Steel Res. Int. 20 (2013) No. 5, 61–65. J. L. Zhao, Y. Xi, W. Shi, L. Li, J. Iron Steel Res. Int. 19 (2012) No. 4, 471–475. D. N. Zhou, Y. Han, W. Zhang, X. D. Fang, J. Iron Steel Res. Int. 17 (2010) No. 8, 50–54. F. Zucchi, V. Grassi, C. Monticelli, Corros. Sci. 48 (2006) 522–530. X. S. Du, Y. J. Su, J. X. Li, Corros. Sci. 65 (2012) 278–287. A. H. S. Bueno, E. D. Moreira, P. Siqueira, Mater. Sci. Eng. A 597 (2014) 117–121. D. Hardie, E. A. Charles, A. H. Lopez, Corros. Sci. 48 (2006) 4378–4385. M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 49 (2007) 4081–4097. D. Figueroa, M. J. Robinson, Corros. Sci. 52 (2010) 1593–1602. E. Lunarska, Y. Ososkov, Y. Jagodzinsky, Int. J. Hydrog. Energy 22 (1997) 279–284. C. Xu, W. Ming, H. Chuan, X. Jun, Acta Metall. Sin. 46 (2010) 951–958. B. R. W. Hinton, R. P. M. Procter, Corros. Sci. 23 (1983) 101–123. L. Zhang, X. G. Li, C. W. Du, Y. Z. Huang, Mater. Des. 30 (2009) 2259–2263. S. Dey, A. K. Mandhyan, S. K. Sondhi, I. Chattoraj, Corros. Sci. 48 (2006) 2676–2688. M. C. Li, Y. F. Cheng, Electrochim. Acta 52 (2007) 8111–8117. L. W. Tsay, H. L. Lu, C. Chen, Corros. Sci. 50 (2008) 2506–2511. R. N. Parkins, Corros. Sci. 20 (1980) 147. M. Javidi, S. Bahalaou Horeh, Corros. Sci. 80 (2014) 213–220. M. Sun, K. Xiao, C. F. Dong, Aerosp. Sci. Technol. 36 (2014) 125–131. C. F. Dong, Z. Y. Liu, X. G. Li, Y. F. Cheng, Int. J. Hydrog. Energy 34 (2009) 9879–9884. G. A. Zhang, Y. F. Cheng, Corros. Sci. 51 (2009) 1714–1724. D. D. MacDonald, Electrochim. Acta 56 (2011) 1761–1772. J. O. M. Bockris, D. Drazic, A. R. Despic, Electrochim. Acta 4 (1961) 325–361.