Stress Dependency of Permeability Represented by an Elastic Cylindrical Pore-Shell Model: Comment on Zhu et al. (Transp Porous Med (2018) 122:235–252)

Transport in Porous Media - Tập 127 - Trang 573-585 - 2018
Faruk Civan1
1Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, Norman, USA

Tóm tắt

Stress dependency of permeability of porous rocks is described by means of a theoretical elastic cylindrical pore-shell model. This model is developed based on a bundle of elastic capillary tubes representation of the preferential flow paths formed in heterogeneous porous rocks. The radial displacement caused in tubes by the pore fluid pressure applied over the surface of the elastic cylindrical flow tubes is expressed by a Lamé-type equation. The radial displacement is incorporated into the Kozeny–Carman relationship to determine the variation of the permeability of porous rocks by variation of the pore fluid pressure. The solution of this equation yields a semi-analytical equation which provides accurate correlations of the stress dependency of the permeability data of porous rocks. The errors associated with the previous formulation of this problem by Zhu et al. (Transp Porous Med 122:235–252, 2018) are explained in view of the present formulation.

Tài liệu tham khảo

Abdalrahman, T., Scheiner, S., Hellmich, C.: Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. J. Theor. Biol. 365, 433–444 (2015) Bernabé, Y.: The effective pressure law for permeability in Chelmsford granite and Barre granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 23(3), 267–275 (1986). https://doi.org/10.1016/0148-9062(86)90972-1 Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941). https://doi.org/10.1063/1.1712886 Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957) Carman, P.C.: The determination of the specific surface of powder: I. J. Soc. Chem. Ind. 57, 225 (1937a) Carman, P.C.: Fluid flow through a granular bed. Trans. Inst. Chem. Eng. Lond. 15, 150–167 (1937b) Carman, P.C.: Flow of gases through porous media. Butterworths, London (1956) Civan, F.: Reservoir Formation Damage-Fundamentals, Modeling, Assessment, and Mitigation, 1st edn, p. 742. Gulf Pub Co., Houston, TX (2000) Civan, F.: Scale effect on porosity and permeability- kinetics, model, and correlation. AIChE J. 47(2), 271–287 (2001) Civan, F.: Relating permeability to pore connectivity using a power-law flow unit equation. Petrophys. J. 43(6), 457–476 (2002) Civan, F.: Characterization of reservoir flow units based on a power-law equation of permeability obtained from an interacting bundle of leaky tubes model. In: SPE-187289-MS, the 2017 SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, 9–11 October 2017 Gangi, A.F.: Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Mining Sci. Geomech. Abstracts 15(5), 249–257 (1978) Ghabezloo, S., Sulem, J., Guedon, S., Martineau, F.: Effective stress law for the permeability of a limestone. Int. J. Rock. Mech. Min. 46, 297–306 (2009) Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W.: Fundamentals of Rock Mechanics. Wiley, New York (2009) Kozeny, J.: Uber Kapillare Leitung des Wasser im Boden. Sitzungsbericht der Akademie der Wissenschaften, Wien 136, 271–306 (1927) Lamé, G.: Leçons sur la Théorie Mathématique de l’Élasticité des Corps Solides. Bachelier, Paris (1852) Morris, J.P., Lomov, I.N., Glenn, L.A.: A constitutive model for stress-induced permeability and porosity evolution of Berea sandstone. J. Geophys. Res. 108(B10), 2485 (2003). https://doi.org/10.1029/2001JB000463 Morrow, C.A., Shi, L.Q., Byerlee, J.D.: Permeability of fault gouge under confining pressure and shear stress. J. Geophys. Res. Solid Earth 89, 3193–3200 (1984) Nelson, R.: Fracture permeability in porous reservoirs: Experimental and field approach. Dissertation for the Doctoral Degree. Texas: Texas A&M University (1975) Scheiner, S., Pivonka, P., Hellmich, C.: Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure. Biomech. Model. Mechanobiol. 15, 9–28 (2016). https://doi.org/10.1007/s10237-015-0704-y Seebyrger, D.A., Nur, A.A.: Pore space model for rock permeability and bulk modulus. J. Geophys. Res. 89(B1), 527–536 (1984) Silvano, S.: Mathematical model of the Lame’ Problem for Simplified Elastic Theory applied to Controlled-Clearance Pressure Balances, Arxiv ID: 2010arXiv1007.0813S, fulldisplay.datasource.Cornell University (2010) Tan, X.-H., Li, X.-P., Liu, J.-Y., Zhang, L.-H., Fan, Z.: Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media. Phys. Lett. A 379, 2458–2465 (2015) Wenlian, X., Tao, L., Min, L., Jinzhou, Z., Lingli, Z., Ling, L.: Evaluation of the stress sensitivity in tight reservoirs. Pet. Explor. Dev. 43(1), 115–123 (2016) Yale, D.P.: Network modeling of flow, storage, and deformation in porous rocks. Stanford University, Stanford, California (1984) Yarushina, V.M., Bercovici, D., Oristaglio, M.L.: Rock deformation models and fluid leak-off in hydraulic fracturing. Geophys. J. Int. 194, 1514–1526 (2013). https://doi.org/10.1093/gji/ggt199 Yarushina, V.M., Podladchinov, Y.Y.: (De)compaction of porous viscoelastoplastic media: model formulation. J. Geophys. Res. Solid Earth (2014). https://doi.org/10.1002/2014jb011258 Zimmerman, R.W.: Compressibility of Sandstones, Developments in Petroleum Science, vol. 29, p. 173. Elsevier Science Publishers B.V., Amsterdam (1991) Zhu, S.Y., Du, Z.M., Li, C.L., et al.: A semi-analytical model for pressure-dependent permeability of tight sandstone reservoirs. Transp. Porous Med. 122(2), 235–252 (2018) Zoback, M.D., Byerlee, J.D.: The effect of microcrack dilatancy on the permeability of Westerly granite. J. Geophys. Res. 80, 752–755 (1975a) Zoback, M.D., Byerlee, J.D.: Permeability and effective stress. AAPG Bull. 59(1), 154–158 (1975b)