Streptococcus pneumoniae ổn định mRNA của yếu tố hoại tử khối u α thông qua một con đường phụ thuộc vào p38 MAPK nhưng không phụ thuộc vào thụ thể Toll-like

BMC Immunology - Tập 9 - Trang 1-10 - 2008
Trine H Mogensen1, Randi S Berg1,2, Lars Østergaard1, Søren R Paludan2
1Department of Infectious Diseases, Skejby Hospital – Aarhus University Hospital, Aarhus N
2Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus C, Denmark

Tóm tắt

Streptococcus pneumoniae là vi khuẩn gây bệnh ở người và là nguyên nhân chính gây ra các bệnh xâm lấn nghiêm trọng, bao gồm viêm phổi, nhiễm khuẩn huyết và viêm màng não. Nhiễm S. pneumoniae gây ra phản ứng viêm mạnh mẽ, đóng vai trò chính trong cơ chế bệnh sinh của bệnh phổi do phế cầu. Trong nghiên cứu này, chúng tôi đã xem xét cách S. pneumoniae ảnh hưởng đến sự biểu hiện của cytokine viêm yếu tố hoại tử khối u (TNF) α, cũng như các cơ chế phân tử liên quan. Sự tiết TNF-α bị kích thích mạnh mẽ bởi S. pneumoniae, đã có thể ổn định mRNA của TNF-α thông qua một cơ chế phụ thuộc vào khả năng sống sót của vi khuẩn cũng như các yếu tố giàu adenylate uridylate trong vùng 3' không dịch mã của mRNA TNF-α. Khả năng của S. pneumoniae trong việc ổn định mRNA TNF-α phụ thuộc vào kinase protein được kích hoạt bởi mitogen (MAPK) p38, trong khi việc ức chế tín hiệu thụ thể Toll-like thông qua MyD88 không ảnh hưởng đến tính ổn định mRNA được kích thích bởi S. pneumoniae. P38 được kích hoạt thông qua một con đường liên quan đến kinase thượng nguồn yếu tố tăng trưởng - kinase 1 được kích hoạt và MAPK kinase 3. Do đó, S. pneumoniae ổn định mRNA TNF-α thông qua một con đường phụ thuộc vào p38 nhưng không phụ thuộc vào thụ thể Toll-like. Sự sản xuất TNF-α có thể đóng góp đáng kể vào phản ứng viêm được tạo ra trong suốt quá trình nhiễm trùng phế cầu.

Từ khóa

#Streptococcus pneumoniae; TNF-α; phản ứng viêm; MAPK p38; thụ thể Toll-like

Tài liệu tham khảo

Koedel U, Scheld WM, Pfister HW: Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis. 2002, 2: 721-736. 10.1016/S1473-3099(02)00450-4. Obaro S, Adegbola R: The pneumococcus: carriage, disease and conjugate vaccines. J Med Microbiol. 2002, 51: 98-104. Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K, Katsuragi H, et al.: Toll-like receptor 9 acts at an early stage in host defence against pneumococcal infection. Cell Microbiol. 2007, 9: 633-644. 10.1111/j.1462-5822.2006.00814.x. Parsons HK, Dockrell DH: The burden of invasive pneumococcal disease and the potential for reduction by immunisation. Int J Antimicrob Agents. 2002, 19: 85-93. 10.1016/S0924-8579(01)00491-5. Moore LJ, Pridmore AC, Lee ME, Read RC: Induction of pro-inflammatory cytokine release by human macrophages during exposure of Streptococcus pneumoniae to penicillin is influenced by minimum inhibitory concentration ratio. Int J Antimicrob Agents. 2005, 26: 188-196. 10.1016/j.ijantimicag.2005.06.006. Clark IA: How TNF was recognized as a key mechanism of disease. Cytokine Growth Factor Rev. 2007, 18: 335-343. 10.1016/j.cytogfr.2007.04.002. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, et al.: Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001, 345: 1098-1104. 10.1056/NEJMoa011110. Rothe J, Lesslauer W, Lotscher H, Lang Y, Koebel P, Kontgen F, et al.: Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature. 1993, 364: 798-802. 10.1038/364798a0. Kirby AC, Raynes JG, Kaye PM: The role played by tumor necrosis factor during localized and systemic infection with Streptococcus pneumoniae. J Infect Dis. 2005, 191: 1538-1547. 10.1086/429296. Tsao N, Chang WW, Liu CC, Lei HY: Development of hematogenous pneumococcal meningitis in adult mice: the role of TNF-alpha. FEMS Immunol Med Microbiol. 2002, 32: 133-140. Piecyk M, Wax S, Beck AR, Kedersha N, Gupta M, Maritim B, et al.: TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J. 2000, 19: 4154-4163. 10.1093/emboj/19.15.4154. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G: Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity. 1999, 10: 387-398. 10.1016/S1074-7613(00)80038-2. Anderson P, Phillips K, Stoecklin G, Kedersha N: Post-transcriptional regulation of proinflammatory proteins. J Leukoc Biol. 2004, 76: 42-47. 10.1189/jlb.1103536. Zhang T, Kruys V, Huez G, Gueydan C: AU-rich element-mediated translational control: complexity and multiple activities of trans-activating factors. Biochem Soc Trans. 2002, 30: 952-958. 10.1042/BST0300952. Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell. 2006, 124: 783-801. 10.1016/j.cell.2006.02.015. Mogensen TH, Paludan SR, Kilian M, Ostergaard L: Live Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis activate the inflammatory response through Toll-like receptors 2, 4, and 9 in species-specific patterns. J Leukoc Biol. 2006, 80: 267-277. 10.1189/jlb.1105626. Moore LJ, Pridmore AC, Dower SK, Read RC: Penicillin enhances the toll-like receptor 2-mediated proinflammatory activity of Streptococcus pneumoniae. J Infect Dis. 2003, 188: 1040-1048. 10.1086/378238. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D: Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol. 1999, 163: 1-5. Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, et al.: Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA. 2003, 100: 1966-1971. 10.1073/pnas.0435928100. Branger J, Knapp S, Weijer S, Leemans JC, Pater JM, Speelman P, et al.: Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun. 2004, 72: 788-794. 10.1128/IAI.72.2.788-794.2004. Akira S, Takeda K: Toll-like receptor signalling. Nat Rev Immunol. 2004, 4: 499-511. 10.1038/nri1391. Koedel U, Rupprecht T, Angele B, Heesemann J, Wagner H, Pfister HW, et al.: MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain. 2004, 127: 1437-1445. 10.1093/brain/awh171. Wellmer A, Zysk G, Gerber J, Kunst T, Von Mering M, Bunkowski S, et al.: Decreased virulence of a pneumolysin-deficient strain of Streptococcus pneumoniae in murine meningitis. Infect Immun. 2002, 70: 6504-6508. 10.1128/IAI.70.11.6504-6508.2002. Inohara N, Chamaillard , McDonald C, Nunez G: NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem. 2005, 74: 355-383. 10.1146/annurev.biochem.74.082803.133347. Opitz B, Puschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S, et al.: Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem. 2004, 279: 36426-36432. 10.1074/jbc.M403861200. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al.: A Toll-like receptor recognizes bacterial DNA. Nature. 2000, 408: 740-745. 10.1038/35047123. Windheim M, Lang C, Peggie M, Plater LA, Cohen P: Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem J. 2007, 404: 179-190. 10.1042/BJ20061704. Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D, et al.: Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol. 2006, 26: 2399-2407. 10.1128/MCB.26.6.2399-2407.2006. Brennan CM, Steitz JA: HuR and mRNA stability. Cell Mol Life Sci. 2001, 58: 266-277. 10.1007/PL00000854. Rajasingh J, Bord E, Luedemann C, Asai J, Hamada H, Thorne T, et al.: IL-10-induced TNF-alpha mRNA destabilization is mediated via IL-10 suppression of p38 MAP kinase activation and inhibition of HuR expression. FASEB J. 2006, 20: 2112-2114. 10.1096/fj.06-6084fje. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, et al.: Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol. 2005, 6: 1087-1095. 10.1038/ni1255. Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, et al.: TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 2005, 19: 2668-2681. 10.1101/gad.1360605. Kumar A, Takada Y, Boriek AM, Aggarwal BB: Nuclear factor-kappaB: its role in health and disease. J Mol Med. 2004, 82: 434-448. 10.1007/s00109-004-0555-y. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ: TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001, 412: 346-351. 10.1038/35085597. Behera AK, Hildebrand E, Uematsu S, Akira S, Coburn J, Hu LT: Identification of a TLR-independent pathway for Borrelia burgdorferi-induced expression of matrix metalloproteinases and inflammatory mediators through binding to integrin alpha 3 beta 1. J Immunol. 2006, 177: 657-664. Kumar A, Zhang J, Yu FS: Innate immune response of corneal epithelial cells to Staphylococcus aureus infection: role of peptidoglycan in stimulating proinflammatory cytokine secretion. Invest Ophthalmol Vis Sci. 2004, 45: 3513-3522. 10.1167/iovs.04-0467. Dean JL, Sully G, Clark AR, Saklatvala J: The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal. 2004, 16: 1113-1121. 10.1016/j.cellsig.2004.04.006. Han J, Brown T, Beutler B: Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J Exp Med. 1990, 171: 465-475. 10.1084/jem.171.2.465. Willeaume V, Kruys V, Mijatovic T, Huez G: Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J Inflamm. 1995, 46: 1-12. Paludan SR, Ellermann-Eriksen S, Kruys V, Mogensen SC: Expression of TNF-alpha by herpes simplex virus-infected macrophages is regulated by a dual mechanism: transcriptional regulation by NF-kappa B and activating transcription factor 2/Jun and translational regulation through the AU-rich region of the 3' untranslated region. J Immunol. 2001, 167: 2202-2208.