Strengthening the ferroelectric properties in the three-component multiferroic ceramic composites

Applied Materials Today - Tập 32 - Trang 101847 - 2023
Dariusz Bochenek1, Artur Chrobak2, Grzegorz Dercz1
1Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów 41–500, Poland
2Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1a, Chorzów 41–500, Poland

Tài liệu tham khảo

Fiebig, 2016, The evolution of multiferroics, Nat. Rev., 1, 1 Scott, 2012, Applications of magnetoelectrics, J. Mater. Chem., 22, 4567, 10.1039/c2jm16137k Spaldin, 2017, Multiferroics: Past, present, and future, MRS Bull., 42, 385, 10.1557/mrs.2017.86 Kleemann, 2012, Multiferroic and magnetoelectric materials – developments and perspectives, EPJ Web Conf., 29, 00046, 10.1051/epjconf/20122900046 Wang, 2009, Multiferroicity: the coupling between magnetic and polarization orders, Adv. Phys., 58, 321, 10.1080/00018730902920554 Vopson, 2015, Fundamentals of multiferroic materials and their possible applications, Crit. Rev. Solid State, 40, 223, 10.1080/10408436.2014.992584 Khomskii, 2009, Classifying multiferroics: mechanisms and effects, Physics, 2, 20, 10.1103/Physics.2.20 Bichurin, M., Petrov, V., Priya, S., Bhalla, A. Multiferroic magnetoelectric composites and their applications, Hindawi Publishing Corporation, Advances in Condensed Matter Physics (2012), Article ID 129794. doi:10.1155/2012/129794. Gao, 2019, Anomalous magnetoelectric coupling effect of CoFe2O4−BaTiO3 binary mixed fluids, ACS Appl. Electron. Mater., 1, 1120, 10.1021/acsaelm.9b00140 Gao, 2018, Strong magnetoelectric coupling effect in BaTiO3@CoFe2O4 magnetoelectric multiferroic fluids, Nanoscale, 10, 11750, 10.1039/C8NR02368A Trukhanov, 2022, Impact of the nanocarbon on magnetic and electrodynamic properties of the ferrite/polymer composites, Nanomaterials, 12, 868, 10.3390/nano12050868 Hill, 2000, Why are there so few magnetic ferroelectrics, J. Phys. Chem. B, 104, 6694, 10.1021/jp000114x Xu, 2018, Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite, Mater. Sci. J. Mater. Sci. Mater. Electron., 29, 16226, 10.1007/s10854-018-9712-x Gao, 2019, Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics, J. Alloys Compd., 795, 501, 10.1016/j.jallcom.2019.05.013 Zhang, 2012, Impedance spectroscopic characterization of fine-grained magnetoelectric Pb(Zr0.53Ti0.47)O3-(Ni0.5Zn0.5)Fe2O4 ceramic composites, J. Alloys Compd., 513, 165, 10.1016/j.jallcom.2011.10.013 Pradhan, 2012, Magnetoelectric properties of PbZr0.53Ti0.47O3-Ni0.65Zn0.35Fe2O4 multiferroic nanocomposites, Appl. Nanosci., 2, 261, 10.1007/s13204-012-0103-y Karapuzha, 2016, Structure, dielectric and piezoelectric properties of donor doped PZT ceramics across the phase diagram, Ferroelectrics, 504, 160, 10.1080/00150193.2016.1240571 Woo, 2006, Effects of complex doping on microstructural and electrical properties of PZT ceramics, J. Electroceram., 17, 597, 10.1007/s10832-006-8568-2 Zachariasz, 2013, Internal friction in the ferroelectric - ferromagnetic composites, Arch. Metall. Mater., 58, 1327, 10.2478/amm-2013-0168 Hrib, 2011, Effects of the chemical composition of the magnetostrictive phase on the dielectric and magnetoelectric properties of cobalt ferrite–barium titanate composites, J. Alloys Compd., 509, 6644, 10.1016/j.jallcom.2011.03.121 Thankachan, 2018, Room temperature magnetoelectric coupling effect in CuFe2O4–BaTiO3 core–shell and nanocomposites, J. Alloy. Compd., 731, 288, 10.1016/j.jallcom.2017.09.309 Gao, 2018, Strong magnetoelectric coupling effect in BaTiO3@CoFe2O4 magnetoelectric multiferroic fluids, Nanoscale, 10, 11750, 10.1039/C8NR02368A Pradhan, 2016, Studies of phase transitions and magnetoelectric coupling in PFN-CZFO multiferroic composites, J. Phys. Chem. C, 120, 1936, 10.1021/acs.jpcc.5b10422 Bochenek, 2008, Influence of the processing conditions on the properties of the biferroic Pb(Fe1/2Nb1/2)O3 ceramics, Eur. Phys. J. Spec. Top., 154, 19, 10.1140/epjst/e2008-00511-8 Bochenek, 2020, Electrophysical properties of the multiferroic BFN-ferrite composites obtained by spark plasma sintering and classical technology, Arch. Metall. Mater., 65, 799 Zekria, 2005, Birefringence imaging measurements on the phase diagram of Pb(Mg1/3Nb2/3)O3–PbTiO3, J. Phys.: Condens. Matter., 17, 1593 Sherlock, 2010, Large signal electromechanical properties of low loss (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, J. Appl. Phys., 107, 10.1063/1.3359716 Kulawik, 2012, Multiferroic cobalt ferrite–lead iron tungstate composites, Acta Phys. Pol. A, 121, 122, 10.12693/APhysPolA.121.122 Rani, 2014, Enhanced magnetodielectric effect and optical property of lead-free multiferroic (1-x)(Bi0.5Na0.5)TiO3/xCoFe2O4 composites, Mater. Chem. Phys., 147, 1184, 10.1016/j.matchemphys.2014.07.002 Guzdek, 2012, Magnetic and magnetoelectric properties of nickel ferrite–lead iron niobate relaxor composites, J. Eur. Ceram. Soc., 32, 2007, 10.1016/j.jeurceramsoc.2011.10.035 Bammannnavar, 2009, Magnetic properties and magnetoelectric (ME) effect in ferroelectric rich Ni0.2Co0.8Fe2O-PbZr0.8Ti0.2O3 ME composites, Mater. Chem. Phys., 117, 46, 10.1016/j.matchemphys.2009.03.040 Trukhanov, 2017, Investigation into the structural features and microwave absorption of doped barium hexaferrites, Dalton Trans., 46, 9010, 10.1039/C7DT01708A Trukhanova, 2021, The origin of the dual ferroic properties in quasi-centrosymmetrical SrFe12−xInxO19 hexaferrites, J. Alloys Compd., 886 Mane, 2020, Magnetoelectric, magnetodielectric effect and dielectric, magnetic properties of microwave-sintered lead-free x(Co0.9Ni0.1Fe2O4)-(1-x)[0.5(Ba0.7Ca0.3TiO3)-0.5(BaZr0.2Ti0.8O3)] particulate multiferroic composite, Ceram. Int., 46, 3311, 10.1016/j.ceramint.2019.10.038 Bochenek, 2022, Electrophysical properties of multiferroic PMN-PT-Ferrite composites sintered by spark plasma sintering, J. Magn. Magn. Mater., 563, 10.1016/j.jmmm.2022.169909 Bochenek, 2022, A Combination of calcination and the Spark Plasma Sintering method in multiferroic ceramic composite technology: Effects of process temperature and dwell time, Materials, 15, 2524, 10.3390/ma15072524 Iordan, 2009, Insitu preparation of CoFe2O4–Pb(ZrTi)O3 multiferroic composites by gel-combustion technique, J. Eur. Ceram. Soc., 29, 2807, 10.1016/j.jeurceramsoc.2009.03.031 Wei, 2008, Enhanced ferromagnetic properties of multiferroic Bi1−xSrxMn0.2Fe0.8O3 synthesized by sol-gel process, J. Alloy. Compd., 453, 20, 10.1016/j.jallcom.2006.11.065 Slimani, 2021, Fabrication of exchange coupled hard/soft magnetic nanocomposites: Correlation between composition, magnetic, optical and microwave properties, Arab. J. Chem., 14, 10.1016/j.arabjc.2021.102992 Mane, 2016, Dielectric, magnetic, and magnetodielectric properties of x[Co0.9Ni0.1Fe2O4]-(1−x)[0.5(Ba0.7Ca0.3)TiO3)-0.5Ba(Zr0.2Ti0.8)O3] multiferroic composites, J. Chin. Adv. Mater. Soc., 4, 269, 10.1080/22243682.2016.1214924 Mahmud, 2014, Effect of high-energy milling process on microstructure and piezoelectric/dielectric properties of 0.99Pb(Zr0.53Ti0.47)O3-0.01BiYO3 ceramic for piezoelectric energy harvesting devices, Electron. Mater. Lett., 10, 223, 10.1007/s13391-013-3060-z Kozlovskiy, 2019, Synthesis, phase composition and structural and conductive properties of ferroelectric microparticles based on ATiOx (A = Ba, Ca, Sr), Ceram. Int., 45, 17236, 10.1016/j.ceramint.2019.05.279 Vinnik, 2021, Electrocatalytic activity of various hexagonal ferrites in OER process, Mater. Chem. Phys., 270, 10.1016/j.matchemphys.2021.124818 Gupta, 2011, Improved magnetoelectric coupling in Mn and Zn doped CoFe2O4–PbZr0.52Ti0.48O3 particulate composite, Appl. Phys. Lett., 98, 10.1063/1.3562949 Tishkevich, 2022, Isostatic hot pressed W–Cu composites with nanosized grain boundaries: Microstructure, structure and radiation shielding efficiency against gamma rays, Nanomaterials, 12, 1642, 10.3390/nano12101642 Laszkiewicz-Łukasik, 2020, Spark plasma sintering/field assisted sintering technique as a universal method for the synthesis, densification and bonding processes for metal, ceramic and composite materials, J. Appl. Mater. Eng., 60, 53, 10.35995/jame60020005 Mane, 2020, Magnetoelectric and magnetodielectric coupling in partially Ni-doped CoFe2O4 and 0.15(Ba0.7Ca0.3TiO3)-0.85(BaZr0.2Ti0.8O3) composites prepared via clean microwave sintering, J. Alloys Compd., 849, 10.1016/j.jallcom.2020.156599 Venkata Ramana, 2011, Magneto-electric effect in multiferroic Ni0.93Co0.02Mn0.05Fe1.95O4−PbZr0.52Ti0.48O3 particulate composites: dielectric, piezoelectric properties, Mod. Phys. Lett. B, 25, 345, 10.1142/S0217984911025742 Bochenek, 2014, Magnetic and electric properties of the lead free ceramic composite based on the BFN and ferrite powders, Mater. Charact., 87, 36, 10.1016/j.matchar.2013.10.027 Bansal, 2021, Magnetoelectric coupling enhancement in lead free BCTZ–xNZFO composites, J. Mater. Sci. Mater. Electron., 32, 17512, 10.1007/s10854-021-06284-9 Bochenek, 2019, Electrophysical properties of the multicomponent PBZT-type ceramics doped by Sn4+, J. Electroceram., 42, 17, 10.1007/s10832-018-0142-1 Barick, 2011, Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3, J. Phys. D Appl. Phys., 44, 10.1088/0022-3727/44/35/355402 Dagar, 2020, Structural refinement, investigation of dielectric and magnetic properties of NBT doped BaFe12O19 novel composite system, J. Alloys Compd., 826, 10.1016/j.jallcom.2020.154214 Iqbal, 2009, Enhancement of electrical resistivity of Sr0.5Ba0.5Fe12O19 nanomaterials by doping with lanthanum and nickel, Mater. Chem. Phys., 118, 308, 10.1016/j.matchemphys.2009.07.056 Zhang, 2016, Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics, J. Phys. D: Appl. Phys., 49 Elissalde, 2001, Ferroelectric ceramics: defects and dielectric relaxations, J. Mater. Chem., 11, 1957, 10.1039/b010117f Adler, 1970, Electrical and optical properties of narrow-band material, Phys. Rev. B, 2, 3112, 10.1103/PhysRevB.2.3112 Wu, 2021, Improvement of magnetoelectric coupling effect in Ba0.8Sr0.2TiO3-Co0.5Cu0.5Fe2O4 multiferroic fluids by tuning the composition, Mater. Today Chem., 21 Gao, 2019, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics, Compos. Part B, 166, 204, 10.1016/j.compositesb.2018.12.010 Chen, 2010, Impedance spectroscopy and conductivity mechanism of CoFe2O4–Pb(Zr0.53Ti0.47)O3 composite thick films, J. Alloys Compds., 508, 141, 10.1016/j.jallcom.2010.08.029 Wu, 2022, Effect of core size on the magnetoelectric properties of [email protected] ceramics, J. Phys. Chem. Solids, 160, 10.1016/j.jpcs.2021.110314 Xiao, 2022, Enhanced piezoelectric properties in a single phase region of Sm-modified lead-free ceramics, Materials, 15, 7839, 10.3390/ma15217839 Agullió-López, 1994 Paik, 2007, Room temperature multiferroic properties of single-phase (Bi0.9La0.1)FeO3–Ba(Fe0.5Nb0.5)O3 solid solution ceramics, Appl. Phys. Lett., 90, 10.1063/1.2434182