Strengthening the ferroelectric properties in the three-component multiferroic ceramic composites
Tài liệu tham khảo
Fiebig, 2016, The evolution of multiferroics, Nat. Rev., 1, 1
Scott, 2012, Applications of magnetoelectrics, J. Mater. Chem., 22, 4567, 10.1039/c2jm16137k
Spaldin, 2017, Multiferroics: Past, present, and future, MRS Bull., 42, 385, 10.1557/mrs.2017.86
Kleemann, 2012, Multiferroic and magnetoelectric materials – developments and perspectives, EPJ Web Conf., 29, 00046, 10.1051/epjconf/20122900046
Wang, 2009, Multiferroicity: the coupling between magnetic and polarization orders, Adv. Phys., 58, 321, 10.1080/00018730902920554
Vopson, 2015, Fundamentals of multiferroic materials and their possible applications, Crit. Rev. Solid State, 40, 223, 10.1080/10408436.2014.992584
Khomskii, 2009, Classifying multiferroics: mechanisms and effects, Physics, 2, 20, 10.1103/Physics.2.20
Bichurin, M., Petrov, V., Priya, S., Bhalla, A. Multiferroic magnetoelectric composites and their applications, Hindawi Publishing Corporation, Advances in Condensed Matter Physics (2012), Article ID 129794. doi:10.1155/2012/129794.
Gao, 2019, Anomalous magnetoelectric coupling effect of CoFe2O4−BaTiO3 binary mixed fluids, ACS Appl. Electron. Mater., 1, 1120, 10.1021/acsaelm.9b00140
Gao, 2018, Strong magnetoelectric coupling effect in BaTiO3@CoFe2O4 magnetoelectric multiferroic fluids, Nanoscale, 10, 11750, 10.1039/C8NR02368A
Trukhanov, 2022, Impact of the nanocarbon on magnetic and electrodynamic properties of the ferrite/polymer composites, Nanomaterials, 12, 868, 10.3390/nano12050868
Hill, 2000, Why are there so few magnetic ferroelectrics, J. Phys. Chem. B, 104, 6694, 10.1021/jp000114x
Xu, 2018, Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite, Mater. Sci. J. Mater. Sci. Mater. Electron., 29, 16226, 10.1007/s10854-018-9712-x
Gao, 2019, Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics, J. Alloys Compd., 795, 501, 10.1016/j.jallcom.2019.05.013
Zhang, 2012, Impedance spectroscopic characterization of fine-grained magnetoelectric Pb(Zr0.53Ti0.47)O3-(Ni0.5Zn0.5)Fe2O4 ceramic composites, J. Alloys Compd., 513, 165, 10.1016/j.jallcom.2011.10.013
Pradhan, 2012, Magnetoelectric properties of PbZr0.53Ti0.47O3-Ni0.65Zn0.35Fe2O4 multiferroic nanocomposites, Appl. Nanosci., 2, 261, 10.1007/s13204-012-0103-y
Karapuzha, 2016, Structure, dielectric and piezoelectric properties of donor doped PZT ceramics across the phase diagram, Ferroelectrics, 504, 160, 10.1080/00150193.2016.1240571
Woo, 2006, Effects of complex doping on microstructural and electrical properties of PZT ceramics, J. Electroceram., 17, 597, 10.1007/s10832-006-8568-2
Zachariasz, 2013, Internal friction in the ferroelectric - ferromagnetic composites, Arch. Metall. Mater., 58, 1327, 10.2478/amm-2013-0168
Hrib, 2011, Effects of the chemical composition of the magnetostrictive phase on the dielectric and magnetoelectric properties of cobalt ferrite–barium titanate composites, J. Alloys Compd., 509, 6644, 10.1016/j.jallcom.2011.03.121
Thankachan, 2018, Room temperature magnetoelectric coupling effect in CuFe2O4–BaTiO3 core–shell and nanocomposites, J. Alloy. Compd., 731, 288, 10.1016/j.jallcom.2017.09.309
Gao, 2018, Strong magnetoelectric coupling effect in BaTiO3@CoFe2O4 magnetoelectric multiferroic fluids, Nanoscale, 10, 11750, 10.1039/C8NR02368A
Pradhan, 2016, Studies of phase transitions and magnetoelectric coupling in PFN-CZFO multiferroic composites, J. Phys. Chem. C, 120, 1936, 10.1021/acs.jpcc.5b10422
Bochenek, 2008, Influence of the processing conditions on the properties of the biferroic Pb(Fe1/2Nb1/2)O3 ceramics, Eur. Phys. J. Spec. Top., 154, 19, 10.1140/epjst/e2008-00511-8
Bochenek, 2020, Electrophysical properties of the multiferroic BFN-ferrite composites obtained by spark plasma sintering and classical technology, Arch. Metall. Mater., 65, 799
Zekria, 2005, Birefringence imaging measurements on the phase diagram of Pb(Mg1/3Nb2/3)O3–PbTiO3, J. Phys.: Condens. Matter., 17, 1593
Sherlock, 2010, Large signal electromechanical properties of low loss (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, J. Appl. Phys., 107, 10.1063/1.3359716
Kulawik, 2012, Multiferroic cobalt ferrite–lead iron tungstate composites, Acta Phys. Pol. A, 121, 122, 10.12693/APhysPolA.121.122
Rani, 2014, Enhanced magnetodielectric effect and optical property of lead-free multiferroic (1-x)(Bi0.5Na0.5)TiO3/xCoFe2O4 composites, Mater. Chem. Phys., 147, 1184, 10.1016/j.matchemphys.2014.07.002
Guzdek, 2012, Magnetic and magnetoelectric properties of nickel ferrite–lead iron niobate relaxor composites, J. Eur. Ceram. Soc., 32, 2007, 10.1016/j.jeurceramsoc.2011.10.035
Bammannnavar, 2009, Magnetic properties and magnetoelectric (ME) effect in ferroelectric rich Ni0.2Co0.8Fe2O-PbZr0.8Ti0.2O3 ME composites, Mater. Chem. Phys., 117, 46, 10.1016/j.matchemphys.2009.03.040
Trukhanov, 2017, Investigation into the structural features and microwave absorption of doped barium hexaferrites, Dalton Trans., 46, 9010, 10.1039/C7DT01708A
Trukhanova, 2021, The origin of the dual ferroic properties in quasi-centrosymmetrical SrFe12−xInxO19 hexaferrites, J. Alloys Compd., 886
Mane, 2020, Magnetoelectric, magnetodielectric effect and dielectric, magnetic properties of microwave-sintered lead-free x(Co0.9Ni0.1Fe2O4)-(1-x)[0.5(Ba0.7Ca0.3TiO3)-0.5(BaZr0.2Ti0.8O3)] particulate multiferroic composite, Ceram. Int., 46, 3311, 10.1016/j.ceramint.2019.10.038
Bochenek, 2022, Electrophysical properties of multiferroic PMN-PT-Ferrite composites sintered by spark plasma sintering, J. Magn. Magn. Mater., 563, 10.1016/j.jmmm.2022.169909
Bochenek, 2022, A Combination of calcination and the Spark Plasma Sintering method in multiferroic ceramic composite technology: Effects of process temperature and dwell time, Materials, 15, 2524, 10.3390/ma15072524
Iordan, 2009, Insitu preparation of CoFe2O4–Pb(ZrTi)O3 multiferroic composites by gel-combustion technique, J. Eur. Ceram. Soc., 29, 2807, 10.1016/j.jeurceramsoc.2009.03.031
Wei, 2008, Enhanced ferromagnetic properties of multiferroic Bi1−xSrxMn0.2Fe0.8O3 synthesized by sol-gel process, J. Alloy. Compd., 453, 20, 10.1016/j.jallcom.2006.11.065
Slimani, 2021, Fabrication of exchange coupled hard/soft magnetic nanocomposites: Correlation between composition, magnetic, optical and microwave properties, Arab. J. Chem., 14, 10.1016/j.arabjc.2021.102992
Mane, 2016, Dielectric, magnetic, and magnetodielectric properties of x[Co0.9Ni0.1Fe2O4]-(1−x)[0.5(Ba0.7Ca0.3)TiO3)-0.5Ba(Zr0.2Ti0.8)O3] multiferroic composites, J. Chin. Adv. Mater. Soc., 4, 269, 10.1080/22243682.2016.1214924
Mahmud, 2014, Effect of high-energy milling process on microstructure and piezoelectric/dielectric properties of 0.99Pb(Zr0.53Ti0.47)O3-0.01BiYO3 ceramic for piezoelectric energy harvesting devices, Electron. Mater. Lett., 10, 223, 10.1007/s13391-013-3060-z
Kozlovskiy, 2019, Synthesis, phase composition and structural and conductive properties of ferroelectric microparticles based on ATiOx (A = Ba, Ca, Sr), Ceram. Int., 45, 17236, 10.1016/j.ceramint.2019.05.279
Vinnik, 2021, Electrocatalytic activity of various hexagonal ferrites in OER process, Mater. Chem. Phys., 270, 10.1016/j.matchemphys.2021.124818
Gupta, 2011, Improved magnetoelectric coupling in Mn and Zn doped CoFe2O4–PbZr0.52Ti0.48O3 particulate composite, Appl. Phys. Lett., 98, 10.1063/1.3562949
Tishkevich, 2022, Isostatic hot pressed W–Cu composites with nanosized grain boundaries: Microstructure, structure and radiation shielding efficiency against gamma rays, Nanomaterials, 12, 1642, 10.3390/nano12101642
Laszkiewicz-Łukasik, 2020, Spark plasma sintering/field assisted sintering technique as a universal method for the synthesis, densification and bonding processes for metal, ceramic and composite materials, J. Appl. Mater. Eng., 60, 53, 10.35995/jame60020005
Mane, 2020, Magnetoelectric and magnetodielectric coupling in partially Ni-doped CoFe2O4 and 0.15(Ba0.7Ca0.3TiO3)-0.85(BaZr0.2Ti0.8O3) composites prepared via clean microwave sintering, J. Alloys Compd., 849, 10.1016/j.jallcom.2020.156599
Venkata Ramana, 2011, Magneto-electric effect in multiferroic Ni0.93Co0.02Mn0.05Fe1.95O4−PbZr0.52Ti0.48O3 particulate composites: dielectric, piezoelectric properties, Mod. Phys. Lett. B, 25, 345, 10.1142/S0217984911025742
Bochenek, 2014, Magnetic and electric properties of the lead free ceramic composite based on the BFN and ferrite powders, Mater. Charact., 87, 36, 10.1016/j.matchar.2013.10.027
Bansal, 2021, Magnetoelectric coupling enhancement in lead free BCTZ–xNZFO composites, J. Mater. Sci. Mater. Electron., 32, 17512, 10.1007/s10854-021-06284-9
Bochenek, 2019, Electrophysical properties of the multicomponent PBZT-type ceramics doped by Sn4+, J. Electroceram., 42, 17, 10.1007/s10832-018-0142-1
Barick, 2011, Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3, J. Phys. D Appl. Phys., 44, 10.1088/0022-3727/44/35/355402
Dagar, 2020, Structural refinement, investigation of dielectric and magnetic properties of NBT doped BaFe12O19 novel composite system, J. Alloys Compd., 826, 10.1016/j.jallcom.2020.154214
Iqbal, 2009, Enhancement of electrical resistivity of Sr0.5Ba0.5Fe12O19 nanomaterials by doping with lanthanum and nickel, Mater. Chem. Phys., 118, 308, 10.1016/j.matchemphys.2009.07.056
Zhang, 2016, Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics, J. Phys. D: Appl. Phys., 49
Elissalde, 2001, Ferroelectric ceramics: defects and dielectric relaxations, J. Mater. Chem., 11, 1957, 10.1039/b010117f
Adler, 1970, Electrical and optical properties of narrow-band material, Phys. Rev. B, 2, 3112, 10.1103/PhysRevB.2.3112
Wu, 2021, Improvement of magnetoelectric coupling effect in Ba0.8Sr0.2TiO3-Co0.5Cu0.5Fe2O4 multiferroic fluids by tuning the composition, Mater. Today Chem., 21
Gao, 2019, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics, Compos. Part B, 166, 204, 10.1016/j.compositesb.2018.12.010
Chen, 2010, Impedance spectroscopy and conductivity mechanism of CoFe2O4–Pb(Zr0.53Ti0.47)O3 composite thick films, J. Alloys Compds., 508, 141, 10.1016/j.jallcom.2010.08.029
Wu, 2022, Effect of core size on the magnetoelectric properties of [email protected] ceramics, J. Phys. Chem. Solids, 160, 10.1016/j.jpcs.2021.110314
Xiao, 2022, Enhanced piezoelectric properties in a single phase region of Sm-modified lead-free ceramics, Materials, 15, 7839, 10.3390/ma15217839
Agullió-López, 1994
Paik, 2007, Room temperature multiferroic properties of single-phase (Bi0.9La0.1)FeO3–Ba(Fe0.5Nb0.5)O3 solid solution ceramics, Appl. Phys. Lett., 90, 10.1063/1.2434182