Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tăng cường các panel masonry bằng vật liệu composite xi măng kỹ thuật
Tóm tắt
Nghiên cứu thực nghiệm toàn diện này nhằm điều tra hành vi của các panel masonry được tăng cường bởi các vật liệu composite xi măng kỹ thuật có cốt sợi (ECC). Chương trình thực nghiệm bao gồm việc thử nghiệm các loại vật liệu, các yếu tố masonry và các panel. Các thử nghiệm vật liệu được thực hiện đầu tiên cho ECC nhằm đánh giá các đặc tính cơ học khác biệt của nó như hành vi căng kéo – biến dạng và hiện tượng nứt nhiều lần. Để nghiên cứu ảnh hưởng của một lớp ECC mỏng lên masonry thông thường về sự thay đổi trong độ cứng, độ bền, và khả năng biến dạng, các thử nghiệm quy mô nhỏ đã được tiến hành trên các yếu tố masonry. Cuối cùng, tổng cộng 10 panel gạch, bao gồm hai mẫu đối chứng và tám mẫu với các cấu hình tăng cường ECC khác nhau đã được chọn. Các mẫu được chịu tải nén chéo dưới sự điều khiển dịch chuyển để đánh giá đặc tính biến dạng trong mặt phẳng và độ bền của chúng, bao gồm cả hành vi mềm mại sau đỉnh để ứng dụng trong lĩnh vực địa chấn. Các kết quả thu được cho thấy rằng kỹ thuật tăng cường ECC được đề xuất có thể làm tăng đáng kể khả năng chịu cắt của các panel masonry, cải thiện khả năng biến dạng của chúng, nâng cao khả năng hấp thụ năng lượng, và ngăn chặn chế độ thất bại giòn. Hơn nữa, khả năng biến dạng vượt trội của ECC được phản ánh rõ ràng qua sự phát triển của các vết nứt trong lớp ECC, được theo dõi bằng một camera độ phân giải cao và được phân tích bằng kỹ thuật tương quan hình ảnh số (DIC).
Từ khóa
#masonry #composite xi măng kỹ thuật #tăng cường #phản ứng địa chấn #khả năng chịu cắtTài liệu tham khảo
Mehrabi AB, Shing PB, Schuller MP, Noland JL (1996) Experimental evaluation of masonry-infilled RC frames. J Struct Eng 122(3):228–237
Tasnimi A, Mohebkhah A (2011) Investigation on the behavior of brick-infilled steel frames with openings, experimental and analytical approaches. Eng Struct 33(3):968–980
El-Dakhakhni WW, Elgaaly M, Hamid AA (2003) Three-strut model for concrete masonry-infilled steel frames. J Struct Eng 129(2):177–185
Kim YY, Kim JS, Ha GJ, Kim JK, Fischer G, Li V (2005) Influence of ECC ductility on the diagonal tension behavior (shear capacity) of infill panels. In: Li VC, Fischer G (eds) Proceedings of the international RILEM workshop on high performance fiber reinforced cementitious composites in structural applications, Honolulu, Hawaii, 23–26 May 2005
El-Dakhakhni WW, Hamid AA, Hakam ZHR, Elgaaly M (2006) Hazard mitigation and strengthening of unreinforced masonry walls using composites. Compos Struct 73(4):458–477
Sattar S, Liel AB (2010) Seismic performance of reinforced concrete frame structures with and without masonry infill walls. In: 9th US National and 10th Canadian conference on earthquake engineering, Toronto, Canada
Frosch RJ, Li W, Jirsa JO, Kreger ME (1996) Retrofit of non-ductile moment-resisting frames using precast infill wall panels. Earthq Spectra 12(4):741–760
Erdem I, Akyuz U, Ersoy U, Ozcebe G (2006) An experimental study on two different strengthening techniques for RC frames. Eng Struct 28(13):1843–1851
Teymur P, Pala S, Yuksel E (2012) Retrofitting of vulnerable reinforced concrete frames with wet-mixed shotcrete panels. Adv Struct Eng 15(1):1–14
Nateghi EF, Dehghani A (2008) Experimental behavior of brick-infilled concrete frames strengthened by CFRP with improved attaching technique. In: Proceedings of the 14th world conference on earthquake engineering, Beijing, China, Paper ID: 12-03-0029
Altin S, Anil, Kara ME, Kaya M (2008) An experimental study on strengthening of masonry infilled RC frames using diagonal CFRP strips. Composites B 39(4):680–693
Lunn DS, Rizkalla SH (2009) Strengthening of infill masonry walls with FRP materials. J Compos Constr 15(2):206–214
Dehghani A, Nateghi EF (2010) Experimental results and conclusions obtained on the masonry-infilled concrete frames strengthened by CFRP. In: Proceedings of the 14th European conference on earthquake engineering, Ohrid, Macedonia, Paper No. 528
Papanicolaou CG, Triantafillou TC, Papathanasiou M, Karlos K (2008) Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading. Mater Struct 41:143–157
Parisi F, Iovinella I, Balsamo A, Augenti N, Prota A (2013) In-plane behaviour of tuff masonry strengthened with inorganic matrix-grid composites. Composites B 45(1):1657–1666
Prota A, Marcari G, Fabbrocino G,Manfredi G, Aldea C (2006) Experimental in-plane behavior of tuff masonry strengthened with cementitious matrixgrid composites. J Compos Constr 10(3):223–233
Lin VWJ, Quek ST, Nguyen MP, Maalej M (2009) Strengthening of masonry walls using hybrid-fiber engineered cementitious composite. J Compos Mater 44(8):1007–1029
Triantafillou TC, Papanicolaou CG (2006) Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Mater Struct 39(1):85–93
Faella C, Martinelli E, Nigro E, Paciello S (2004) Tuff masonry walls strengthened with a new kind of C-FRP sheet: experimental tests and analysis. In: Proceedings of the 13th world conference on earthquake engineering, Paper No. 923
Papanicolaou CG, Triantafillou TC, Karlos K, Papathanasiou M (2007) Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: in-plane cyclic loading. Mater Struct 40:1081–1097
Shin SK, Kim JJH, Lim YM (2007) Investigation of the strengthening effect of DFRCC applied to plain concrete beams. Cem Concr Compos 29(6):465–473
El-Gawady M, Lestuzzi P, Badoux M (2004) A review of conventional seismic retrofitting techniques for URM. In: 13th international brick and block masonry conference
Li VC (1998) Engineered cementitious composites Tailored composites trough micromechanical modeling. In: Banthia N et al (eds) Fiber reinforced concrete: present and the future. CSCE, Montreal, pp 64–69
Kim YY, Fischer G, Li VC (2003) Performance of bridge deck link slabs designed with ductile ECC. ACI Struct J 101(6):792–801
Fischer G, Li VC (2003) Deformation behavior of fiber-reinforced polymer reinforced engineered cementitious composites (ECC) flexural members under reversed cyclic loading conditions. ACI Struct J 100(1):25–35
Kim YY, Fischer G, Lim YM, Li VC (2004) Mechanical performance of sprayed engineered cementitious composite using wet-mix shotcreting process for repair applications. ACI Mater J 101(1):42–49
Mahmood H, Ingham JM (2011) Diagonal compression testing of FRP-retrofitted unreinforced clay brick masonry wallettes. J Compos Constr 15(5):810–820
Sousa R, Sousa H, Guedes J (2012) Diagonal compressive strength of masonry samples-experimental and numerical approach. Mater Struct, (in press) doi:10.1617/s11527-012-9933-z
RILEM TC 76-LUM (1994) Diagonal tensile strength tests of small wall specimens. International Union of Laboratories and Experts in Construction Materials, Systems and Structures, Bagneux
Frocht M (1931) Recent advances in photoelasticity. ASME Trans 55:135–153
ASTM E519-07 (2007) Standard test method for tension (shear) in masonry assemblages. American Society for Testing and Materials, West Conshohocken
Yokota S, Ohnuki H, Machida K, Zhang ZG (2011) Damage assessment of a structure by a digital image correlation method. Key Eng Mater 462:118–123
Pereira EB, Fischer G, Barros JAO (2012) Direct assessment of tensile stress-crack opening behavior of strain hardening cementitious composites (SHCC). Cem Concr Res 42(6):834–846
Tung SH, Shih MH, Sung WP (2008) Development of digital image correlation method to analyse crack variations of masonry wall. Sadhana 33(6):767–779
GOM Optical Measuring Techniques (2005) Aramis v5.4 user manual. GOM mbH
EN 12390-3 (2009) Testing hardened concrete—part 3: compressive strength of test specimens. European Committee for Standardization, Brusseles
ASTM C270-03 (2003) Standard specification for mortar for unit masonry. American Society for Testing and Materials, West Conshohocken
ASTM C67-09 (2009) Standard test methods for sampling and testing brick and structural clay tile. American Society for Testing and Materials, West Conshohocken
ASTM C348-02 (2002) Standard test method for flexural strength of hydraulic-cement mortars. American Society for Testing and Materials, West Conshohocken
ASTM C109-02 (2002) Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). American Society for Testing and Materials, West Conshohocken
ASTM C1314-09 (2009) Standard test method for compressive strength of masonry prisms. American Society for Testing and Materials, West Conshohocken
Paulay T, Priestley MJN (1992) Seismic design of reinforced concrete and masonry buildings. Wiley, New York
ASTM E518-10 (2010) Standard test method for flexural bond strength of masonry. merican Society for Testing and Materials, West Conshohocken
VINNAPAS® Product Overview Europe 2011/2012 (Typ SAF 54). Wacker Chemie AG, http://www.wacker.com/cms/media/publications/downloads/6729_EN.pdf. Accessed 26 May 2013
ASTM C1583-04 (2004) Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (pull off method). American Society for Testing and Materials, West Conshohocken
British standard, BS EN 1052-3:2002 (2002) Methods of test for masonry—Part 3: determination of initial shear strength. BSI, London