Độ bền và độ cứng của hỗn hợp vữa phấn nén–xi măng

Acta Geotechnica - Tập 17 - Trang 2955-2969 - 2021
Bruna Zakharia Hoch1, Andrea Diambra2, Erdin Ibraim2, Lucas Festugato1, Nilo Cesar Consoli1
1Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
2Department of Civil Engineering, University of Bristol, Bristol, UK

Tóm tắt

Phấn dễ bị vỡ khi chịu tác động của con người như xử lý cơ khí, thi công công trình đất hoặc lắp đặt cọc. Những hành động này làm phá vỡ cấu trúc liên kết của phấn, biến nó thành một vật liệu suy giảm được gọi là vữa, có độ bền và độ cứng thấp hơn so với phấn nguyên trạng. Việc bổ sung xi măng Portland có thể cải thiện hành vi của các loại vữa phấn. Tuy nhiên, chưa có nghiên cứu nào xác định độ bền kéo của các hỗn hợp vữa phấn–xi măng, sự phát triển độ cứng ban đầu trong thời gian đông cứng và các tham số thiết kế khác như góc ma sát và độ dính của vật liệu này. Bài báo này giải quyết khoảng trống kiến thức này và cung cấp một cách giải thích cho các kết quả thực nghiệm mới dựa trên chỉ số vô dạng được biểu thị dưới dạng tỷ lệ giữa độ rỗng và hàm lượng thể tích xi măng (η/Civ) hoặc biến thể lũy thừa của nó (η/Civa). Chỉ số này giúp lựa chọn lượng xi măng và mật độ cho các tham số thiết kế chính của hỗn hợp vữa phấn–xi măng nén cần thiết trong các dự án kỹ thuật địa chất như móng đường và mặt đường, đê điều, và cũng như móng cọc bê tông khoan.

Từ khóa

#phấn #vữa phấn #xi măng Portland #độ bền kéo #độ cứng #kỹ thuật địa chất

Tài liệu tham khảo

Arιoglu N, Canan Girgin Z, Arιoglu E (2006) Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion. ACI Mater J 103(1):18–24 Arroyo M, Muir Wood D, Greening PD, Medina L, Rio J (2006) Effects of sample size on bender-based axial Go measurements. Géotechnique 56(1):39–52 ASTM (2008) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. In: ASTM D2845. ASTM International, West Conshohocken ASTM (2011) Method for consolidated drained triaxial compression test for soils. In: ASTM D7181. ASTM International, West Conshohocken ASTM (2012) Standard test methods for laboratory compaction characteristics of soil using standard effort. In: ASTM D698. ASTM International, West Conshohocken ASTM (2017a) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). In: ASTM D2487. ASTM International, West Conshohocken ASTM (2017b) Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. In: ASTM D6913. ASTM International, West Conshohocken ASTM (2017c) Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. In: ASTM D7928. ASTM International, West Conshohocken ASTM (2017d) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. In: ASTM D4318. ASTM International, West Conshohocken ASTM (2017e) Standard test method for splitting tensile strength of cylindrical concrete specimens. In: ASTM C496. ASTM International, West Conshohocken ASTM (2019) Standard specification for Portland cement. In: ASTM C150. ASTM International, West Conshohocken Bell FG, Culshaw MG, Cripps JC (1999) A review of selected engineering geological characteristics of English chalk. Eng Geosci 54:237–269 Bialowas G, Diambra A, Nash D (2016) Small strain stiffness evolution of reconstituted medium density chalk. In: 1st IMEKO TC-4 international workshop on metrology for geotechnics. IMEKO-international measurement federation secretariat, Italy, vol 17, No. 18, pp 162–167 Bialowas GA, Diambra A, Nash DF (2018) Stress and time-dependent properties of crushed chalk. Proc Inst Civ Eng Geotech Eng 171(6):530–544 Bloomfield JP, Brewerton LJ, Allen DJ (1995) Regional trends in matrix porosity and dry density of the Chalk of England. Q J Eng Geol 28:131–142 Buckley RM (2018) The axial behaviour of displacement piles in chalk. Ph.d. thesis, Department of Civil and Environmental Engineering, Imperial College London Buckley RM, Jardine RJ, Kontoe S, Parker D, Schroeder FC (2018) Ageing and cyclic behaviour of axially loaded piles driven in chalk. Géotechnique 68(2):146–161 Bundy SPS (2013) Geotechnical properties of chalk putties. Ph.d. thesis, University of Portsmouth Ciavaglia F, Carey J, Diambra A (2017) Time-dependent uplift capacity of driven piles in low to medium density chalk. Géotech Lett 7(1):90–96 Ciavaglia F, Carey J, Diambra A (2017) Monotonic and cyclic lateral tests on driven piles in Chalk. Proc Inst Civ Eng Geotech Eng 170:1–14 Clayton CRI (1990) The mechanical properties of the Chalk. In: Chalk proceedings of the international chalk symposium, Brighton Polytechnic, London, pp 213–232 Clayton CRI, Matthews MC (1987) Deformation, diagenesis and mechanical behaviour of chalk. In: Jones ME, Preston RMF (eds) Deformation of sediments and sedimentary rocks, vol 29. Geology Society Special Publication, London, pp 55–62 Clayton C, Khatrush S, Bica A, Siddique A (1989) The use of Hall effect semiconductors in geotechnical instrumentation. Geotech Test J 12(1):69–76 Clough W, Sitar N, Bachus RC, Rad NS (1981) Cemented sands under static loading. J Geotech Eng Div 107(6):799–817 Consoli NC, Foppa D, Festugato L, Heineck KS (2007) Key parameters for strength control of artificially cemented soils. J Geotech Geoenviron Eng 133(2):197–205 Consoli NC, da Fonseca AV, Silva SR, Cruz RC, Heineck KS (2009) Fundamental parameters for the stiffness and strength control of artificially cemented sand. J Geotech Geoenviron Eng 135:1347–1353 Consoli NC, Cruz RC, Floss MF, Festugato L (2010) Parameters controlling tensile and compressive strength of artificially cemented sand. J Geotech Geoenviron Eng 136(5):759–763 Consoli NC, Cruz RC, Floss MF (2011) Variables controlling strength of artificially cemented sand: Influence of curing time. J Mater Civ Eng 23(5):692–696 Consoli NC, da Fonseca AV, Silva SR, Cruz RC, Fonini A (2012) Parameters controlling stiffness and strength of artificially cemented soils. Géotechnique 62(2):177–183 Consoli NC, Lopes LS Jr, Consoli BS, Festugato L (2014) Mohr-Coulomb failure envelopes of lime-treated soils. Géotechnique 64(2):165–170 Consoli NC, Ferreira PMV, Tang CS, Marques SFV, Festugato L, Corte MB (2016) A unique relationship determining strength of silty/clayey soils—Portland cement mixes. Soils Found 56(6):1082–1088 Consoli NC, Quiñónez Samaniego RA, González Velásquez LE, López RA (2016) Influence of molding moisture content and porosity/cement index on stiffness, strength, and failure envelopes of artificially cemented fine-grained soils. J Mater Civ Eng 29(5):04016277 Consoli NC, Marques SFV, Floss MF, Festugato L (2017) Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils. J Mater Civ Eng 29(6):06017004 Consoli NC, Hoch BZ, Festugato L, Diambra A, Ibraim E, Da Silva JK (2018) Compacted chalk putty-cement blends: mechanical properties and performance. J Mater Civ Eng 30(2):04017266 Descamps F, Faÿ-Gomord O, Vandycke S, Schroeder C, Swennen R, Tshibangu J (2017) Relationships between geomechanical properties and lithotypes in NW European chalks. Geol Soc Lond Spec Publ 458(1):227–244 Diambra A, Ciavaglia F, Harman A, Dimelow C, Carey J, Nash DFT (2014) Performance of cyclic cone penetration tests in chalk. Géotech Lett 4(3):230–237 Diambra A, Ibraim E, Peccin A, Consoli NC, Festugato L (2017) Theoretical derivation of artificially cemented granular soil strength. J Geotech Geoenviron Eng 143(5):04017003 Diambra A, Ibraim E, Festugato L, Corte MB (2019) Stiffness of artificially cemented sands: insight on characterisation through empirical power relationships. Road Mater Pavem Des 22:1–11 Hornych P, Hameury O, Puiatti D (2004) Laboratory and in situ evaluation of stabilization of limestone aggregates using lime. In: Proceedings of the 6th international symposium on pavements unbound. Nottingham, England, p 291 Hutchinson JN (2002) Chalk flows from the coastal cliffs of northwest Europe. Geol Soc Am Rev Eng Geol 15:257–302 Jardine RJ, Buckley RM, Kontoe S, Barbosa P, Schroeder FC (2018) Behaviour of piles driven in chalk. In: Engineering in chalk: proceedings of the Chalk 2018 conference. ICE publishing, pp 33–51 Jovičić V, Coop MR, Simić M (1996) Objective criteria for determining Gmax from bender element tests. Géotechnique 46(2):357–362 Kou H, Liu J, Guo W (2021) Effect of freeze–thaw cycles on strength and ductility and microstructure of cement-treated silt with polypropylene fiber. Acta Geotech 16:3555–3572 La Rochelle P, Leroueil S, Trak B, Blais-Leroux L, Tavenas F (1988) Observational approach to membrane and area correction in triaxial tests. In: Symposium on advanced triaxial testing of soil and rock. Louisville: proceedings. American Society of Testing and Materials, Philadelphia, pp 715–731 Lake L (1975) Engineering properties of chalk with special reference to foundation design and performance. Ph.d. thesis, University of Surrey Lee J-S, Santamarina JC (2005) Bender elements: performance and interpretation. J Geotech Geoenviron Eng 131(9):1063–1070 Lord JA, Clayton CRI, Mortimore RN (2002) Engineering in chalk. CIRIA Publication C574, London Lord JA, Hayward T, Clayton CRI (2003) Shaft friction of CFA piles in chalk. CIRIA, London Mitchell JK (1981) Soil improvement—state-of-the-art report. In: Proceedings of the 10th international conference on soil mechanics and foundation engineering, 4. International Society of Soil Mechanics and Foundation Engineering, Stockholm, pp 509–565 Mortimore RN, Stone KJ, Lawrence J, Duperret A (2004) Chalk physical properties and cliff instability. Geol Soc Lond Eng Geol Spec Publ 20(1):75–88 Sánchez-Salinero I, Roesset JM, Stokoe KH (1986) Analytical studies of body wave propagation and attenuation. Report no. GR85-15, University of Texas at Austin, Austin, Texas Viana da Fonseca A, Ferreira C, Fahey M (2009) A framework interpreting bender element tests combining time-domain and frequency-domain methods. Geotech Test J 32(2):91–107 Viggiani G, Atkinson JH (1995) Stiffness of fine-grained soil at very small strains. Géotechnique 45(1):249–265 Wei X, Liu H, Ku T (2020) Microscale analysis to characterize effects of water content on the strength of cement-stabilized sand–clay mixtures. Acta Geotech 15:2905–2923 Zhou J, Yu J, Gong X (2020) The effect of cemented soil strength on the frictional capacity of precast concrete pile–cemented soil interface. Acta Geotech 15:3271–3282