Stratosphere‐troposphere exchange

Reviews of Geophysics - Tập 33 Số 4 - Trang 403-439 - 1995
James R. Holton, Peter Haynes, M. E. McIntyre, A. R. Douglass, Richard B. Rood1, L. Pfister
1Climate and Space Sciences and Engineering

Tóm tắt

In the past, studies of stratosphere‐troposphere exchange of mass and chemical species have mainly emphasized the synoptic‐ and small‐scale mechanisms of exchange. This review, however, includes also the global‐scale aspects of exchange, such as the transport across an isentropic surface (potential temperature about 380 K) that in the tropics lies just above the tropopause, near the 100‐hPa pressure level. Such a surface divides the stratosphere into an “overworld” and an extratropical “lowermost stratosphere” that for transport purposes need to be sharply distinguished. This approach places stratosphere‐troposphere exchange in the framework of the general circulation and helps to clarify the roles of the different mechanisms involved and the interplay between large and small scales. The role of waves and eddies in the extratropical overworld is emphasized. There, wave‐induced forces drive a kind of global‐scale extratropical “fluid‐dynamical suction pump,” which withdraws air upward and poleward from the tropical lower stratosphere and pushes it poleward and downward into the extratropical troposphere. The resulting global‐scale circulation drives the stratosphere away from radiative equilibrium conditions. Wave‐induced forces may be considered to exert a nonlocal control, mainly downward in the extratropics but reaching laterally into the tropics, over the transport of mass across lower stratospheric isentropic surfaces. This mass transport is for many purposes a useful measure of global‐scale stratosphere‐troposphere exchange, especially on seasonal or longer timescales. Because the strongest wave‐induced forces occur in the northern hemisphere winter season, the exchange rate is also a maximum at that season. The global exchange rate is not determined by details of near‐tropopause phenomena such as penetrative cumulus convection or small‐scale mixing associated with upper level fronts and cyclones. These smaller‐scale processes must be considered, however, in order to understand the finer details of exchange. Moist convection appears to play an important role in the tropics in accounting for the extreme dehydration of air entering the stratosphere. Stratospheric air finds its way back into the troposphere through a vast variety of irreversible eddy exchange phenomena, including tropopause folding and the formation of so‐called tropical upper tropospheric troughs and consequent irreversible exchange. General circulation models are able to simulate the mean global‐scale mass exchange and its seasonal cycle but are not able to properly resolve the tropical dehydration process. Two‐dimensional (height‐latitude) models commonly used for assessment of human impact on the ozone layer include representation of stratosphere‐troposphere exchange that is adequate to allow reasonable simulation of photochemical processes occurring in the overworld. However, for assessing changes in the lowermost stratosphere, the strong longitudinal asymmetries in stratosphere‐troposphere exchange render current two‐dimensional models inadequate. Either current transport parameterizations must be improved, or else, more likely, such changes can be adequately assessed only by three‐dimensional models.

Từ khóa


Tài liệu tham khảo

10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2

10.1002/qj.49711046404

10.1002/qj.49711046405

Andrews D. G., 1987, Middle Atmospheric Dynamics

10.1038/358570a0

Appenzeller C., 1995, Fragmentation of stratospheric intrusions, J. Geophys. Res.

10.1016/0004-6981(84)90351-2

10.1029/95GL02337

10.1002/qj.49707532603

10.1029/JD092iD02p02112

10.1175/1520-0469(1994)051<1581:TFASSB>2.0.CO;2

10.1029/95GL00626

10.1175/1520-0469(1994)051<3006:IMEBTT>2.0.CO;2

10.1029/93GL01678

10.1002/qj.49712152408

10.1175/1520-0469(1994)051<2309:ACOWFT>2.0.CO;2

10.1175/1520-0469(1968)025<0502:STEBOR>2.0.CO;2

10.1029/GL009i006p00605

10.1029/92JD02954

10.1126/science.211.4486.1041

10.1175/1520-0469(1968)025<0269:OTEAPO>2.0.CO;2

10.1175/1520-0469(1969)026<0073:TOPWZF>2.0.CO;2

10.1175/1520-0493(1971)099<0501:AMFZWI>2.3.CO;2

10.1175/1520-0493(1971)099<0511:AMFZWI>2.3.CO;2

Douglass A. R., 1992, The Atmospheric Effects of Stratospheric Aircraft: A First Program Report, NASA Ref. Publ., 33

10.1029/93JD00250

10.1175/1520-0469(1989)046<0956:NHCDBA>2.0.CO;2

10.1175/1520-0469(1991)048<0236:NPOZWI>2.0.CO;2

Dunkerton T. J., 1981, Some Eulerian and Lagrangian diagnostics for a model stratospheric warming, J. Atmos. Sci., 38, 819, 10.1175/1520-0469(1981)038<0819:SEALDF>2.0.CO;2

10.1016/0960-1686(91)90089-P

Eliassen A., 1951, Slow thermally or frictionally controlled meridional circulation in a circular vortex, Astrophys. Norv., 5, 19

10.1002/qj.49712051902

10.1016/S0065-2687(08)60227-7

10.1175/1520-0469(1992)049<0879:OTCTEO>2.0.CO;2

10.1175/1520-0469(1987)044<3599:OTMMCO>2.0.CO;2

10.1175/1520-0469(1994)051<2238:COTMMC>2.0.CO;2

10.1029/JC085iC01p00413

10.1175/1520-0469(1990)047<2021:OTCAIT>2.0.CO;2

10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2

10.1175/1520-0469(1982)039<0412:OTHOTT>2.0.CO;2

10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2

10.1175/1520-0493(1993)121<0162:AGAOSE>2.0.CO;2

10.1007/978-94-009-6390-0_20

10.1175/1520-0469(1986)043<1238:MDOSTC>2.0.CO;2

10.1002/qj.49709741202

10.1034/j.1600-0870.1991.t01-3-00005.x

10.1002/qj.49711147002

1987, Correction, Q. J. R. Meteorol. Soc., 113, 402

10.1029/94GL01287

10.1038/328590a0

10.1029/92JD02526

10.1175/1520-0493(1990)118<1914:OTFOPV>2.0.CO;2

10.1029/GL009i006p00617

10.1029/GL009i006p00613

10.1029/92JD02525

10.1029/91JD01358

10.1029/92JD02524

10.1175/1520-0469(1994)051<2246:CTMEAP>2.0.CO;2

10.1029/GL007i006p00441

10.1175/1520-0469(1994)051<3221:TEPFAB>2.0.CO;2

10.1007/BF02247609

10.1175/1520-0469(1980)037<0655:TDTSAB>2.0.CO;2

10.1007/978-94-009-6390-0_21

10.1029/JD091iD02p02687

10.1029/91GL02790

10.1029/92JD02218

McIntyre M. E., 1992, The Use of EOS for Studies of Atmospheric Physics, 313

10.1016/B978-0-444-88889-1.50025-X

10.1016/0021-9169(84)90063-1

10.1029/94JD00913

10.1029/95GL01234

Mote P. W., 1995, An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor, J. Geophys. Res.

10.1175/1520-0469(1981)038<2789:ASF>2.0.CO;2

10.1175/1520-0469(1994)051<0654:BRWIAM>2.0.CO;2

10.1038/374146a0

10.1029/92JD01679

10.1175/1520-0469(1982)039<0983:ZSHMAM>2.0.CO;2

10.1175/1520-0469(1987)044<0298:TZATCO>2.0.CO;2

10.1175/1520-0469(1995)052<1288:OTSEOT>2.0.CO;2

10.1175/1520-0469(1995)052<1034:TROMCI>2.0.CO;2

10.1002/qj.49711951007

10.1038/355810a0

10.1175/1520-0469(1993)050<3308:GVOZMO>2.0.CO;2

10.1038/365533a0

10.1029/93JD02694

10.1175/1520-0469(1969)026<0163:TATVIT>2.0.CO;2

10.1175/1520-0469(1981)038<1928:OTAVIH>2.0.CO;2

10.1007/BF00875056

10.1175/1520-0469(1984)041<2934:IOTSWV>2.0.CO;2

10.1002/qj.49710644802

10.1029/94JD03122

10.1029/93JD00392

10.1175/1520-0469(1994)051<3373:AAOFIN>2.0.CO;2

10.1029/92JD02521

10.1175/1520-0469(1977)034<0280:ASSSMO>2.0.CO;2

10.1029/92JD02932

10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2

10.1029/93JD01583

10.1175/1520-0469(1986)043<1603:TTBTDC>2.0.CO;2

10.1029/94JD02752

10.1029/93JD02332

10.1029/94JD00044

10.1175/1520-0493(1994)122<0686:ASTDAS>2.0.CO;2

10.1029/JD094iD09p11359

10.1038/372348a0

10.1038/355626a0

10.1029/93JD01362

10.1029/94JD00355

10.1175/1520-0469(1982)039<2330:OTTDTO>2.0.CO;2

10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2

10.1175/1520-0469(1994)051<0530:CAWSAT>2.0.CO;2

10.1175/1520-0469(1987)044<3079:ANFOTE>2.0.CO;2

10.1002/qj.49712152107

World Meteorological Organization (WMO) Atmospheric ozone 1985 WMO 16 Geneva Switzerland 1986.

WMO Scientific Assessment of Ozone Depletion: 1994 WMO 37 Geneva Switzerland 1995.

10.1175/1520-0469(1994)051<3437:PODABI>2.0.CO;2

10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2